Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Квадратичная форма, ее матрица




Определение 10.1. Квадратичной формой от n переменных называется однородный многочлен второй степени

. (10.1)

Запись вида (10.1) называется координатной формой записи квадратичной формы (с приведенными подобными членами).

Если в -мерном линейном пространстве выбран некоторый базис, то переменные можно интерпретировать как координаты вектора в этом базисе, при этом координатный вектор-столбец. Если обозначить через (, ) матрицу -го порядка из коэффициентов , то квадратичную форму (5.1) можно записать в матричной форме

. (10.2)

При этом квадратная матрица называется матрицей квадратичной формы. В силу условия при всех она является симметрической матрицей. В самом деле, имеем

.

Определение 10.2. Рангом квадратичной формы (10.2) называется ранг её матрицы . При этом пишут

.

Определение 10.3. Квадратичная форма (10.2) называется невырожденной, если соответствующая ей матрица является невырожденной. При этом . В противном случае (если ) квадратичная форма (10.2) называется вырожденной.

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.