Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 1. Оценка неопределенности методом моделирования




Эмпирический метод оценки неопределенности.

Источники неопределенности.

Оценка неопределенности методом моделирования.

Тема 8. Оценка неопределенности измерений.

 

Вопросы:

 

 

В настоящее время выделяют три надежных способа (подхода) по количественной оценке неопределенности измерения:

1. Метод моделирования, изложенный в GUM, с применением закона распределения неопределенности;

2. Метод моделирования Монте-Карло (Приложения 1 к GUM);

3. Эмпирические методы, основанные на внутрилабораторном или межлабораторном исследовании выполнения методов измерений (испытаний).

Метод моделирования является наиболее разработанным и широко используемым для оценки неопределенности измерений.

Метод состоит в установлении модели измерений, которая связывает измеряемую величину с влияющими величинами, расчете стандартной неопределенности каждой влияющей величины и оценке, с учетом коэффициентов чувствительности, стандартной неопределенности измеряемой величины. При использовании этого метода предполагается, что поправки на значимые систематические эффекты включены в модель. Применение закона распространения неопределенности дает возможность оценить суммарную неопределенность, связанную с результатом. Подход зависит от частных производных для каждой влияющей величины, следовательно, зависит от вида функциональной зависимости результата или, если формой является алгоритм, от численного дифференцирования.

Типичными выходными данными подхода моделирования является «бюджет неопределенности», дающий итоговую оценку суммарной стандартной неопределенности результата измерения из неопределенностей входных величин. Бюджет неопределенности включает данные о каждой «входной величине» и ее вкладе в результат измерения и неопределенность и сами данные о результате измерения и ее неопределенности как показано ниже на схеме (рис. 3).

Бюджет неопределенности относится к определенному результату измерения. Однако, разработанный алгоритм бюджета неопределенности, обычно изложенный в методике расчета неопределенности, можно применить ко всем измерениям, проведенным с использованием того же метода. Для любого нового измерения (суммарная) стандартная неопределенность u (y) получается через введение в алгоритм входных данных xi и u (xi) для этого измерения, на основании которых затем будут получены y и u (y).

Входные величины   Результат измерения
значение xi   значение y
стандартная неопределенность u(xi)   (суммарная) стандартная неопределенность u(y)
коэффициент чувствительности ci = (∂y/∂xi)   коэффициент охвата k
вклад в неопределенность ui(y) = ci · u(xi)   расширенная неопределенность U(y) = k · u(y)

Рис.3. Элементы бюджета неопределенности

 

Так как бюджет неопределенности содержит информацию об относительных величинах вкладов различных входных величин в неопределенность, то эта информация может быть использована для улучшения методики измерения и повышения ее точности.

Процесс оценивания неопределенности по методу моделирования состоит из следующих этапов.

1. Описание измерения, составление его модели и выявление источников неопределенности.

Любой процесс измерения можно представить в виде последовательности выполняемых операций. Поэтому для описания измеряемой величины и выявления источников неопределенности целесообразно представить цепь преобразования измеряемой величины в виде схемы, отображающей последовательность процесса измерений.

В большинстве случаев измеряемая величина Y не является прямо измеряемой, а зависит от N других измеряемых величин Х 1, Х 2 … Х N и выражается через функциональную зависимость

, (1)

где – X1, X2, … XN входные величины;

Y – выходная величина.

Входные величины X1, X2, … XN, от которых зависит выходная величина Y, являются непосредственно измеряемыми величинами и сами могут зависеть от других величин, включая поправки и поправочные коэффициенты на систематические эффекты:

,

и т. д. (2)

Описание измеряемой величины в виде функциональной зависимости (математической модели), связывающей измеряемую величину с параметрами, от которых она зависит, называется моделированием.

Стадия моделирования является чрезвычайно важной, так как от правильности и тщательности составления модели измерения, которая определяется необходимой точностью, зависит количество источников неопределенности.

С целью обобщения источников неопределенности измеряемую (выходную) величину и выявленные источники неопределенности: входные величины и величины, на них влияющие целесообразно представить на диаграмме «причина – следствие» (рис. 4):

Рис. 4. Диаграмма «причина-следствие»

Источниками неопределенности могут быть пробоотбор, условия хранения, аппаратурные эффекты, чистота реактивов, условия измерений, влияние пробы, вычислительные и случайные эффекты, влияние оператора.

2.Оценивание значений и стандартных неопределенностей входных величин. Следующим этапом после выявления источников неопределенности является количественное описание неопределенностей, возникающих от этих источников. Это может быть сделано двумя путями:

– оцениванием неопределенности, возникающей от каждого отдельного источника с последующим суммированием составляющих;

– непосредственным определением суммарного вклада в неопределенность от некоторых или всех источников с использованием данных внутрилабораторных или межлабораторных исследований об эффективности метода в целом.

Для каждой входной величины необходимо определить оценку и стандартную неопределенность. При этом все входные величины вследствие того, что их значения не могут быть точно известны, являются случайными непрерывными. Тогда оценками входных величин (x1, x2xN), обозначаемыми малыми буквами, являются их математические ожидания, а стандартными неопределенностями u(xi) входных величин – стандартные отклонения. Оценку входных величин и связанную с ней стандартную неопределенность u(xi) получают из закона распределения вероятностей входной величины.

Оценивание неопределенности от каждого источника возможно двумя способами: по типу А (путем статистического анализа ряда наблюдений) и по типу В (иным способом, чем статистический анализ ряда наблюдений).

Исходными данными для оценивания стандартной неопределенности по типу А являются результаты многократных измерений xi1, … xim; i =1, …, m. На основании полученных результатов рассчитывается среднее арифметическое по формуле (49), которое является оценкой входной величины Xi:

. (3)

Стандартная неопределенность, связанная с оценкой является экспериментальным стандартным отклонением среднего значения и равна положительному квадратному корню из экспериментальной дисперсии среднего значения.

Стандартная неопределенность u(xi) вычисляется по формуле:

(4)

для результата измерения , вычисленного как среднее арифметическое.

Исходными данными для оценивания стандартной неопределенности по типу В является следующая априорная информация:

– данные предшествовавших измерений величин, входящих в уравнение измерения;

– сведения о виде распределения вероятностей;

– данные, основанные на опыте исследователя или общих знаниях о поведении и свойствах соответствующих средств измерений и материалов;

– неопределенности констант и справочных данных;

– данные поверки, калибровки, сведения изготовителя о средстве измерения и др.

Если оценка xi берется из спецификации изготовителя, свидетельства о поверке, справочника или другого источника, то неопределенность обычно дается как интервал ± a отклонения входной величины от ее оценки. Имеющуюся информацию о величинах xi необходимо правильно описать с помощью функции распределения вероятностей. Для определения стандартной неопределенности входных величин необходимо воспользоваться законом распределения вероятностей xi. При этом чаще всего используют следующие основные законы распределения:

– прямоугольное (равномерное);

– треугольное;

– нормальное (Гаусса).

Формулы и способы применения представлены в таблице 2.

 

Таблица 2




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 3598; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.