КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод МО
В этом методе молекула рассматривается в рамках орбитальной модели, точно так же, как многоэлектронный атом, только способы движения электронов описываются не атомными, а молекулярными орбиталями (МО). Молекулярная орбиталь отличается тем, что она является многоцентровой, т.е. охватывает сразу несколько атомных ядер. Глобальная волновая функция молекулы в методе МО строится в виде определителя Слэтера, каждая строка которого включает все занятые электронами МО. Для этого, однако, необходимо знать явный вид МО. Эта задача решается на основе принципа суперпозиции — неизвестная функция заменяется линейной комбинацией известных базисных функций: j i = Ci 1 y1 + Ci 2 y2 + … Для построения таких комбинаций в методе используется атомный базис, аналогичный тому, который применяется в методе ВС. Единственная разница заключается в том, что в методе ВС анализируется глобальная функция молекулы, а в методе МО — одноэлектронные молекулярные орбитали. В методе ВС с помощью перегородок разрезается многоэлектронное облако, включающее все электроны молекулы. В методе МО тем же набором перегородок разрезается одноэлектронное облако. Поэтому здесь в качестве резонансных форм выступает единственный электрон, локализованный в окрестности одного из ядер. Его движение в этом случае описывается соответствующей атомной орбиталью. В результате, каждая МО представляется в виде линейной комбинации базисного набора атомных орбиталей (ЛКАО). Основная проблема метода МО сводится к вычислению коэффициентов разложения для каждой из МО. При решении этой задачи следует учитывать два важных условия. 1) ортонормированность: òj i j j dv = d ij (1 при i = j и 0 при i ¹ j), 2) пространственная симметрия: j i Ì НП ТГС (всякая МО должна описываться одним из типов симметрии точечной группы молекулы). Для молекулы водорода принято классифицировать МО относительно операции инверсии — на четные, для которых i (j g) = (+1)(j g) и нечетные, для которых i (j u) = (–1)(j u). Перейдем к рассмотрению молекулы водорода. Для нее атомный базис состоит всего из двух АО, которые обозначим, как и в методе ВС, буквами A и B. Тогда любая МО должна выражаться линейной комбинацией типа: j = C A × A + C B × B Учет симметрии молекулы приводит к условию: | C A|2 = | C B|2, которое выполняется в двух случаях: при C A = + C B и C A = – C B. Следовательно, можно построить всего две МО — одну четную (G) и одну нечетную (U): G = Cg (A + B) и U = Cu (A – B) Нормировочные множители можно найти стандартным путем: Cg = 1 / (2 + 2 s)1/2 и Cu = 1 / (2 – 2 s)1/2 Дополнив полученные МО спиновыми множителями a или b, получим четыре варианта молекулярных спин-орбиталей (МСО): G a, G b, U a и U b. При сближении атомов водорода их электроны, движущиеся по атомным типам А и В, вынуждены перейти к молекулярным типам движения, в качестве которых и выступают найденные четыре МСО. Поскольку электронов всего два, заселены будут только две из четырех МСО. Следовательно, существует несколько вариантов конечного состояния молекулы, а именно — шесть.
Для каждого варианта можно построить глобальную волновую функцию в виде определителя Слэтера. Например, для первого варианта волновая функция будет иметь вид (без учета нормировочного множителя): Запишем вид и остальных функций, придерживаясь стандартного соглашения (первый сомножитель относится к первому электрону, второй — к второму).
Все эти волновые функции обладают нужной для выполнения принципа Паули перестановочной антисимметричностью. Глобальные волновые функции, однако, должны кроме этого, обладать и подходящей пространственной симметрией, например, быть либо четными, либо нечетными. Для проверки этой характеристики, необходимо отделить пространственную часть от спиновой и подействовать на пространственную часть оператором инверсии. Из таблицы видно, что функции Ф3 и Ф4 не разделены на пространственный и спиновой сомножители. Поэтому для них невозможно определить тип симметрии. Обойти эту трудность можно посредством известного приема — симметризации — заменить неправильные функции Ф3 и Ф4 на их сумму и разность, обладающие правильной симметрией: Ф'3 = Ф3 + Ф4 = [ GU – UG ](ab + ba) Ф'4 = Ф3 + Ф4 = [ GU + UG ](ab – ba) Теперь можно установить пространственную симметрию глобальных волновых функций:
Видно, что волновые функции Ф2, Ф'3 и Ф5 образуют триплет: их пространственные множители одинаковы, а спиновые состояния отличаются ориентацией вектора глобального спина молекулы. Фu = (1/2)0,5(GU – UG)[ C 1(aa) + C 2 (ab + ba) + C 3(bb)]
Дата добавления: 2015-06-04; Просмотров: 524; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |