Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приведение пространственной системы сил к данному центру




Полученные выше результаты позволяют решить задачу о приведении любой системы сил к данному центру. Эта задача, решается с помощью теоремы о параллельном переносе силы. Для переноса действующей на абсолютно твердое тело силы из точки А (рис. 43, а) в точку О прикладываем в точке О силы = и = - . Тогда сила = окажется приложенной в точке О и к ней будет присо­единена пара (, ) с моментом , что можно показать еще так, как на рис. 43, б. При этом

Рис.43

Рассмотрим теперь твердое тело, на которое действует какая угодно система сил , ,…, (рис. 44, а). Выберем произволь­ную точку О за центр приведения и перенесем все силы системы в этот центр, присоединяя при этом соответствующие пары. Тогда на тело будет действовать система сил

= , = , …, = .

приложенных в центре О, и система пар, моменты которых будут равны

= (), = (), …, = (),

Силы, приложенные в точке О, заменяются одной силой , при­ложенной в той же точке. При этом или,

.

Чтобы сложить все полученные пары, надо геометрически сло­жить векторы моментов этих пар. В результате система пар заме­нится одной парой, момент которой или,

.

Как и в случае плоской системы, величина , равная геометри­ческой сумме всех сил, называется главным вектором системы; величина , равная геометрической сумме моментов всех сил отно­сительно центра О, называется главным моментом системы отно­сительно этого центра.

Рис.44

Таким образом мы доказали следующую теорему, любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой , равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом , равным главному моменту системы относительно центра О (рис. 36, б).

Векторы и обычно определяют аналитически, т.е. по их проекциям на оси координат.

Выражения для R x, R y, R z нам известны. Проекции век­тора на оси координат будем обозначать M x, M y, M z. По тео­реме о проекциях суммы векторов на ось будет или, . Аналогично находятся величины M y и M z.

Окончательно для определения проекций главного вектора и главного момента получаем формулы:




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.