КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры решения задач по механике
Задача 1. Движение тела массой 2 кг задано уравнением: , где путь выражен в метрах, время - в секундах. Найти зависимость ускорения от времени. Вычислить равнодействующую силу, действующую на тело в конце второй секунды, и среднюю силу за этот промежуток времени.
Решение: Модуль мгновенной скорости находим как производную от пути по времени: Мгновенное тангенциальное ускорение определяется как производная от модуля скорости по времени: Среднее ускорение определяется выражением: После подстановки: Равнодействующая сила, действующая на тело, определяется по второму закону Ньютона: Тогда Ответ: a(t) = 36t, F = 144 H, = 72 H.
Задача 2. По наклонной плоскости, составляющей с горизонтом угол 30º, движется тело массой 5 кг. К этому телу с помощью нерастяжимой нити, перекинутой через блок, привязано тело такой же массы, движущееся вертикально вниз (рис. 1). Коэффициент скольжения между телом и наклонной плоскостью 0,05. Определить ускорение тел и силу натяжения нити.
Решение: Покажем на рисунке силы, действующие на каждое тело. Запишем для каждого из тел уравнение движения (второй закон Ньютона): В проекциях на выбранные оси координат: Учитывая, что , где , получим систему уравнений: Вычтем из первого уравнения второе: Искомое ускорение равно: Вычислим ускорение а: Силу натяжения найдем из первого уравнения системы: Ответ:
Задача 3. Найти линейные ускорения движения центров тяжести шара и диска, скатывающихся без скольжения с наклонной плоскости. Угол наклона плоскости равен 30º. Начальная скорость тел равна нулю.
Решение: При скатывании тела с наклонной плоскости высотой h его потенциальная энергия переходит в кинетическую поступательного и вращательного движения. По закону сохранения энергии: (1) где I - момент инерции тела, m - масса. Длина наклонной плоскости l связана с высотой соотношением (рис. 2): (2) Линейная скорость связана с угловой: (3) После подстановки (2) и (3) в (1), получим: (4) Так как движение происходит под действием постоянной силы (силы тяжести), то движение тел - равноускоренное. Поэтому: (5) и (6) Решая совместно (4), (5) и (6), получим: (7) Моменты инерции:
Подставляя выражение для момента инерции в формулу (7), получим:
Ответ:
Дата добавления: 2015-06-04; Просмотров: 1507; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |