![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие о линейном фильтре. Оператор сверткиПреобразование экспериментальных данных
Воздействие линейного фильтра на входной сигнал f(t) задается выражением
где Основная задача линейной фильтрации состоит в определении весовой функции фильтра hi. Заметим, что если в качестве весовых коэффициентов используются непосредственно сами исходные данные fi, то выражение (6.1) приводит к реализации нелинейного фильтра. Так, если Суть операции свертки (6.1) легко пояснить на следующем примере. Пусть входная функция, т.е. исходные данные заданы тремя дискретными значениями f0, f1 и f2, а весовая функция – двумя дискретными значениями h0, h1. В соответствии с выражением свертки (6.1) получаем: при j =0 y0 = h0f0 при j =1 при при Процесс вычисления выходных значений свертки можно представить в виде следующей схемы f0 f1 f2 → h1 h0 h1 h0 h h0 h1 h0 → Таким образом, операция свертки выполняется в четыре этапа: обращение во времени весовой функции, ее перемещение вдоль исходных (входных) значений поля, перемножение весовых коэффициентов с входными значениями и суммирование полученных произведений. Общее число выходных значений Проблема построения фильтра состоит в нахождении весовой функции, исходя из выбранной модели экстремальных данным, цели обработки и априорной информации о сигнале и помехах. Используя свойство преобразований Фурье о свертке, можно перейти к частотному аналогу уравнения свертки, т.е.
где При дискретном задании весовой функции ее частотная характеристика определяется дискретным преобразованием Фурье. Обратное преобразование Фурье позволяет найти весовую функцию фильтра При этом амплитудный спектр выходного сигнала В общем случае частотная характеристика Амплитудно-частотная характеристика определяет величину усиления для составляющих сигнала определенной частоты при ее прохождении через линейный фильтр. Частотно-фазовая характеристика определяет временную задержку для составляющих, создаваемую фильтром на заданной частоте. Фильтры, построение которых проводится в частотной области, делятся на 1.Низкочастотные, амплитудно-частотная характеристика 2.Высокочастотные, амплитудно-частотная характеристика 3.Полосовые, обеспечивающие равномерное усиление в полосе частот Частоты Основой построения (или синтеза) фильтров любого типа является низкочастотный фильтр, поскольку через его амплитудно-частотную характеристику выражаются другие типы фильтров. Так, для высокочастотного фильтра
Дата добавления: 2015-06-26; Просмотров: 1052; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |