Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
производные.
7)
Интегрирование простейших дробей
Площадь криволинейной трапеции, ограниченной кривой , прямыми и отрезком[a, b] оси Ox, вычисляется по формуле
Площадь фигуры, ограниченной кривыми и прямыми , находится по формуле
Если кривая задана параметрическими уравнениями , то площадь криволинейной трапеции, ограниченной этой кривой, прямыми и отрезком[a, b] оси Ox, выражается формулой
где определяются из уравнений
Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением и двумя полярными радиусами находится по формуле
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление