Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями
Если |h|<c, то плоскости z=h не пересекаются.
Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в точках (0;0;с) и (0;0;-с).
Если |h|>c, то уравнения можно переписать в виде:
Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.
У обеих гипербол действительной осью является ось oz. Метод сечения позволяет изобразить поверхность, состоящую из двух полостей, имеющих форму двух неограниченных чаш. Поверхность называется двуполостным гиперболоидом.
5 БИЛЕТ:
1. Канонические уравнения прямой. Общие уравнения прямой. Переход от общих уравнений к каноническим.
S(m;n;p) – направляющий вектор прямой L. M0(x0;y0;z0) – точка на прямой. соединяет M0 с произвольной точкой М.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление