Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Замена независимых переменных в выражении, содержащем частные производные




Решение.

Решение.

,

.

Подставляем в уравнение

или .

Пример 5. Преобразовать уравнение , приняв за аргумент, а за функцию.

, .

Подставим эти выражения производных в данное уравнение, будем иметь

, или окончательно .

Если в дифференциальном выражении

положить , (8)

где и новые независимые переменные, то частные производные определяются из следующих уравнений:

, .

 

Пример 6. Уравнение колебаний струны преобразовать к новым независимым переменным и .

Решение. Выразим частные производные от по и через частные производные от по и .

Очевидно,

,

.

Дифференцируем вторично, применяя ту же формулу

,

.

Подставив в уравнение, получим

Пример 7. Преобразовать уравнение , приняв за новые независимые переменные , и за новую функцию .

Решение. Выразим частные производные и через частные производные и . Для этого продифференцируем данные соотношения между старыми и новыми переменными:

.

С другой стороны,

.

Поэтому

или

.

Отсюда

и, следовательно,

и .

Подставляя эти выражения в данное уравнение, получим

или .

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 3623; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.