Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм Шора




Алгоритм Шора — это квантовый алгоритм факторизации (разложения числа на простые множители), позволяющий разложить число N за время O(N3(log N)k), где k=const, затратив O(log N) места.

Значимость алгоритма заключается в том, что при использовании достаточно мощного квантового компьютера, он сделает возможным взлом криптографических систем с открытым ключом. К примеру, RSA использует открытый ключ N, являющийся произведением двух больших простых чисел. Один из способов взломать шифр RSA — найти множители N. При достаточно большом N это практически невозможно сделать, используя известные классические алгоритмы. Так как алгоритм Шора работает только на квантовом компьютере, в настоящее время не существует технических средств, позволяющих за полиномиальное время разложить достаточно большое число на множители. Алгоритм Шора в свою очередь, используя возможности квантовых компьютеров, способен произвести факторизацию числа за полиномиальное время. Это может поставить под угрозу надёжность большинства криптосистем с открытым ключом, основанных на сложности проблемы факторизации чисел.

Как и другие алгоритмы для квантовых компьютеров, алгоритм Шора вероятностный: он даёт верный ответ с высокой вероятностью. Вероятность ошибки может быть уменьшена при повторном использовании алгоритма. Тем не менее, так как возможна проверка предложенного результата (в частности простоты числа) в полиномиальное время, алгоритм может быть модифицирован так, что ответ, полученный в полиномиальное время, будет верным с единичной вероятностью.

Алгоритм Шора был разработан Питером Шором в 1994 году. Семь лет спустя, в 2001 году, его работоспособность была продемонстрирована группой специалистов IBM. Число 15 было разложено на множители 3 и 5 при помощи квантового компьютера с 7 кубитами.
Основные идеи алгоритма Шора Алгоритм Шора основан на возможности быстро вычислить собственные значения унитарного оператора с высокой точностью, если можно эффективно вычислять любые его степени. Взяв в качестве такого оператора умножение на x по модулю N (этот оператор действует в 2n мерном пространстве, где, преобразуя базисный вектор, соответствующий числу a, в базисный вектор, соответствующий числу xa(modN)), мы сможем вычислить такое n, что xn = 1(modN), что позволяет (с высокой вероятностью) разложить N на множители на обычном компьютере.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1323; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.