Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оператор перестановки частиц. Тождественные частицы. Симметричные и антисимметричные состония. Принцип Паули




Будем называть одинаковыми частицы, имеющие одинаковые массы, заряды, спины и т.д. Такие частицы в равных условиях ведут себя одинаковым образом, теряют свою индивидуальность. Поэтому выполняется принцип тождественности частиц: состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте и такие состояния следует рассматривать как одно и то же физическое состояние.

Рассмотрим систему из N невзаимодействующих частиц, обладающих спином. Волновая функция такой системы имеет вид . Введем обозначения: , тогда в новых обозначениях волновая функция примет вид: . Введем оператор перестановки двух частиц местами. Переставим, например, первую и вторую частицы:

. (1)

С другой стороны, по определению оператора:

. (2)

Подействуем на оператором дважды, тогда с учетом (1) получим , (3)

с учетом (2), получим:

(4)

Как следует из (3) и (4), должно выполняться равенство:

Опр. Функции, сохраняющие свое значение при перестановке аргументов, называются симметричными: . Функции, изменяющие знак при перестановке аргументов, называются антисимметричными: .

В релятивистской квантовой механике доказывается, что частицы с целым спином должны иметь симметричные волновые функции, а частицы с полуцелым спином – антисимметричные. Электроны имеют полуцелый спин, поэтому описываются антисимметричными волновыми функциями.

Частицы с целым спином называются бозонами, с полуцелым – фермионами. Примером бозона является фотон, примерами фермионов – электроны, протоны, нейтроны.

Рассмотрим систему из двух невзаимодействующих тождественных фермионов. Каждый из них описывается своей волновой функцией и . Построим из этих функций волновую функцию двух фермионов . Величина определяет вероятность совместного состояния двух фермионов, а величины и – вероятности для состояний для отдельных фермионов. Теорема об умножении вероятностей независимых событий будет выполняться, если двухчастичную волновую функцию записать в виде:

. (5)

В силу тождественности фермионов эту функцию можно записать и в виде:

. (6)

Так как волновая функция двух фермионов должна быть антисимметричной и следует учесть два варианта представления (5) и (6), то запишем двухчастичную функцию в виде:

, (7)

где С – нормировочный множитель. Функцию (7) можно записать в виде определителя: . (8)

По аналогии с (8) можно записать волновую функцию для N невзаимодействующих фермионов:

. (9)

Рассмотрим случай, когда два фермиона находятся в одинаковых состояниях. Это означает, что среди набора волновых функций две будут одинаковые, например и . Тогда в определителе (9) два столбца будут совпадать и определитель будет равен нулю. Т.е. такое состояние системы невозможно. Отсюда следует принцип Паули: два тождественных фермиона не могут находиться в одном квантовом состоянии.

Если рассмотреть систему из двух невзаимодействующих бозонов, то двухчастичная волновая функция бозонов запишется в виде:

. (10)

По аналогии с (10) волновая функция N невзаимодействующих бозонов будет иметь вид:

, (11)

где суммирование производится по всем перестановкам индексов i1i2….




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1683; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.