![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Состояния с двумя бозе-частицами
Теперь мы хотели бы обсудить интересное следствие из правила сложения для бозе-частиц. Оно касается поведения этих частиц, когда их не одна, а несколько. Начнем с рассмотрения случая рассеяния двух бозе-частиц на двух различных рассеивателях. Нас интересуют не детали механизма рассеяния, а лишь одно: что происходит с рассеянными частицами. Пусть перед нами случай, показанный на фиг. 2.3. Фиг. 2.3. Двойное рассеяние в близкие конечные состояния.
Частица а, рассеявшись, оказалась в состоянии 1. Под состоянием мы подразумеваем данное направление и энергию или какие-нибудь другие заданные условия. Частица b рассеялась в состояние 2.Предположим, что состояния 1 и 2 почти одинаковы. (На самом же деле мы хотели бы получить амплитуду того, что две частицы рассеялись в одном и том же направлении или в одно и то же состояние, но лучше будет; если мы сперва подумаем над тем, что произойдет, если состояния будут почти одинаковыми, а затем выведем отсюда, что бывает при их полном совпадении.) Пусть у нас была бы только частица а; тогда у нее была бы определенная амплитуда рассеяния в направлении 1, скажем <1| а >. А частица b сама по себе обладала бы амплитудой <2| b> того, что приземление произойдет в направлении 2. Если частицы не тождественны, то амплитуда того, что в одно и то же время произойдут оба рассеяния, равна попросту произведению <1|а><2| b>. Вероятность же такого события тогда равна |<l| a ><2| b> |2 что также равняется |<1| а >|2|<2| b >|2. Чтобы сократить запись, мы иногда будем полагать <1| а >= а 1, <2| b >= b 2. Тогда вероятность двойного рассеяния есть |a1|2|b2|2. Могло бы также случиться, что частица b рассеялась в направлении 1, а частица а —в направлении 2. Амплитуда такого процесса была бы равна <2| а ><1| b >, а вероятность такого события равна |<2| а ><1| b >|2=| a 2|2| b 1|2. Представим себе теперь, что имеется пара крошечных счетчиков, которые ловят рассеянные частицы. Вероятность Р2 того, что они засекут сразу обе частицы, равна просто P 2=| a 1|2| b 2|2+|a2|2| b 1|2. (2.3) Положим теперь, что направления 1 и 2 очень близки. Будем считать, что а с изменением направления меняется плавно, тогда а 1и а 2 при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а 1и а 2 сравняются, и можно будет положить а 1= а 2 и обозначить каждую из них просто а; точно так же мы положим и b 1= b 2= b. Тогда получим Р 2 = 2 |а| 2 |b| 2. (2.4)
Теперь, однако, предположим, что а и b — тождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в котором b переходит в 2, а а — в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплитуда того, что в каждом из счетчиков появится по частице, равна <1| а ><2| b >+<2| а ><1| b >, (2.5) и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды: Р 2= | а 1 b 2+ a 2 b 1|2=4| a |2| b |2(2.6) Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состояние, по сравнению с расчетом, проводимым в предположении, что частицы различны. Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, который находится на каком-то расстоянии. Мы определим направление 1, говоря, что оно смотрит в элемент поверхности dS 1 счетчика. Направление же 2 смотрит в элемент поверхности dS 2счетчика. (Считается, что счетчик представляет собой поверхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксированное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали вероятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1| а >= a 1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а 1и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS 1равна Если вся площадь нашего счетчика D S и мы заставим dS 1странствовать по этой площади, то полная вероятность того, что частица а рассеется в счетчик, будет Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а 1на его поверхности не очень меняется; значит, а 1будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS 2с вероятностью (Мы говорим d S 2, а не dS 1в расчете на то, что позже частицам а и b будет разрешено двигаться в разных направлениях.) Опять положим b 2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна Когда же имеются две частицы, то вероятность рассеяния а в dS 1и b в dS 2будет Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS 1 и dS 2по всей площади D S; получится Заметим, кстати, что это равно просто ра•рb вточности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга. Однако, когда две частицы тождественны, имеются две неразличимые возможности для каждой пары элементов поверхности dS 1и dS 2. Частица а, попадающая в dS 2, и частица b, попадающая в dS 1, неотличимы от а в dS 1и от b в dS2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS 1и dS 2, есть Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dS 1и dS 2 странствовать по всей площади D S, мы бы сосчитали каждую часть площади дважды, поскольку в (2.13) входит все, что может случиться с каждой парой элементов поверхности dS 1и dS 2. Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р 2для тождественных бозе-частиц есть И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц. Если вообразить на мгновение, что мы откуда-то знали, что канал b уже послал свою частицу в своем направлении, то можно сказать, что вероятность того, что вторая частица направится в ту же сторону, вдвое больше того, чего можно было бы ожидать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц. что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в Ö2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать результат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)
Дата добавления: 2015-06-04; Просмотров: 508; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |