Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принцип запрета




Жидкий гелий

Жидкий гелий при низких температурах обладает рядом странных свойств, на подробное описание которых у нас, к со­жалению, не хватает времени. Многие из них просто связаны с тем, что атом гелия — это бозе-частица. Одно из этих свойств— жидкий гелий течет без какого бы то ни было вязкого сопротив­ления. Это в действительности та самая «сухая» вода, о которой мы говорили в одной из прежних глав (при условии, что ско­рости достаточно низки). Причина здесь вот в чем. Чтобы жи­дкость обладала вязкостью, в ней должны быть внутренние поте­ри энергии; надо, чтобы одна из частей жидкости могла двигаться не так, как оставшаяся жидкость. Это означает, что должна быть возможность выбивать некоторые атомы в состояния, отличные от тех, в которых пребывают другие атомы. Но при достаточно низких температурах, когда тепловое движение становится очень слабым, все атомы стремятся попасть в одни и те же ус­ловия. Так, если некоторые из них движутся в одну сторону, то и все атомы пытаются двигаться все вместе таким же образом. Это своего рода жесткость по отношению к движению, и такое движение трудно разбить на неправильные турбулентные части, как это было бы, скажем, с независимыми частицами. Итак, в жидкости бозе-частиц есть сильное стремление к тому, чтобы все атомы перешли в одно состояние,— стремление, представ­ляемое множителем Ö(n+1), полученным нами ранее. (А в бутылке жидкого гелия n, конечно, очень большое число!) Это движение не происходит при высоких температурах, потому что тогда тепловой энергии хватает на то, чтобы перевести разные атомы во всевозможные различные высшие состояния. Но при достаточном понижении температуры внезапно насту­пает момент, когда все атомы гелия стремятся оказаться в одном и том же состоянии. Гелий становится сверхтекучим. Кстати, это явление возникает лишь у изотопа гелия с атомным весом 4. Отдельные атомы изотопа гелия с атомным весом 3 суть ферми-частицы, и жидкость здесь самая обычная. Поскольку сверх­текучесть бывает лишь у Не4, то со всей очевидностью этот эффект квантовомеханический, вызываемый бозевской приро­дой a-частицы.

Ферми-частицы ведут себя совершенно иначе. Посмотрим, что произойдет, если мы попытаемся поместить две ферми-частицы в одно и то же состояние. Вернемся к нашему первона­чальному примеру и поинтересуемся амплитудой того, что две идентичные ферми-частицы рассеются в почти одинаковом на­правлении. Амплитуда того, что частица а пойдет в направ­лении 1, а частица b — в направлении 2, есть

<1| a >.<2| b >,

тогда как амплитуда того, что направления вылетающих частиц обменяются местами, такова:

<2| а ><1| b>.

Раз мы имеем дело с ферми-частицами, то амплитуда процесса является разностью этих двух амплитуд:

<1| а ><2| b >-<2| а ><1| b >. (2.44)

Следует сказать, что под «направлением 1» мы подразумеваем, что частица обладает не только определенным направлением, но и заданным направлением своего спина, а «направление 2» почти совпадает с направлением 1 и отвечает тому же направ­лению спина. Тогда <1| а > и <2| а > будут примерно равны. (Этого могло бы и не быть, если бы состояния 1 и 2 вылетающих частиц не обладали одинаковым спином, потому что тогда по каким-то причинам могло бы оказаться, что амплитуда зависит от направления спина.) Если теперь позволить направлениям 1 и 2 сблизиться друг с другом, то полная амплитуда в уравне­нии (2.44) станет равной нулю. Для ферми-частиц результат много проще, чем для бозе-частиц. Просто абсолютно невоз­можно, чтобы две ферми-частицы, например два электрона, оказались в одинаковом состоянии. Вы никогда не обнаружите два электрона в одинаковом положении и со спинами, направленными в одну сторону. Двум электронам невозможно иметь один и тот же импульс и одно и то же направление спина. Если они оказываются в одном и том же месте или в одном и том же состоянии движения, то единственное, что им остается,— это завертеться навстречу друг другу.

Каковы следствия этого? Имеется множество замечатель­ных эффектов, проистекающих из того факта, что две ферми-частицы не могут попасть в одно и то же состояние. На самом деле почти все особенности материального мира зависят от этого изумительного факта. Все разнообразие, представленное в периодической таблице элементов, в основе своей является следствием только этого правила.

Конечно, мы не можем сказать, на что был бы похож мир, если бы это правило — и только оно одно — изменилось; ведь оно является частью всей структуры квантовой механики, и невозможно сказать, что бы еще изменилось, если бы правило, касающееся ферми-частиц, стало бы другим. Но все же попро­буем представить себе, что случилось бы, если бы переменилось только это правило. Во-первых, можно показать, что каждый атом остался бы более или менее неизменным. Начнем с атома водорода. Он заметно не изменился бы. Протон ядра был бы окружен сферически симметричным электронным облаком (фиг. 2.11, а).

Фиг. 2.11. Так могли бы выглядеть атомы, если бы электроны вели себя как бозе-частицы.

 

Как мы уже писали в гл. 38 (вып. 3), хоть элект­рон и притягивается к центру, принцип неопределенности тре­бует, чтобы было равновесие между концентрацией в простран­стве и концентрацией по импульсу. Равновесие означает, что распределение электронов должно характеризоваться опреде­ленной энергией и протяженностью, определяющими характе­ристические размеры атома водорода.

Пусть теперь имеется ядро с двумя единицами заряда, на­пример ядро гелия. Это ядро будет притягивать два электрона, и, будь они бозе-частицами, они бы, если не считать их электри­ческого отталкивания, сплотились близ ядра как можно тесней. Атом гелия выглядел бы так, как на фиг. 2.11, б. Точно так же и атом лития, у которого ядро заряжено трехкратно, обладал бы электронным распределением, похожим на то, что изобра­жено на фиг. 2.11, в. Каждый атом выглядел бы более или ме­нее, как раньше: круглый шарик, все электроны в котором си­дят близ ядра; не было бы никаких выделенных направлений и никаких сложностей.

Но из-за того, что электроны — это ферми-частицы, дейст­вительное положение вещей совершенно иное. Для атома водорода оно в общем-то не меня­ется. Единственное отличие в том, что у электрона есть спин (показан на фиг. 2.12, а стрелочкой).

Фиг. 2.12. Атомные конфигурации, для настоящих, фермиевского типа электронов со спином. 1/2.

В слу­чае же атома гелия мы уже не сможем посадить один из элект­ронов на другой. Впрочем, пого­дите, это верно лишь тогда, когда их спины направлены одинаково. Но если они разведут свои спины врозь, то они уже будут вправе занять одно и то же место. Так что атом гелия тоже не очень-то изме­нится. Он будет выглядеть так, как показано на фиг. 2.12, б. А вот для лития положение вещей совер­шенно изменится. Куда сможем мы пристроить третий электрон? Его нельзя посадить прямо на первые два, потому что оба направления спина заняты. (Вы помните, что и у электрона, и у любой частицы со спином 1/2 имеются лишь два допустимых направления спина.) Третий электрон не сможет приблизиться к месту, оккупированному двумя другими, он обязан занять особое положение в каком-то ином состоянии, намного дальше от ядра (фиг. 2.12, в). (Мы здесь говорим обо всем довольно грубо, потому что на са­мом-то деле все три электрона тождественны, а раз мы не можем в действительности разобраться, кто из них кто, то наш рисунок верен только в общих чертах.)

Теперь мы уже начинаем понимать, отчего у разных атомов бывают разные химические свойства. Из-за того, что третий электрон в литии намного дальше, он связан несравненно сла­бее. Увести один электрон у лития куда легче, чем у гелия. (Опыт говорит, что для ионизации гелия нужно 25 в, а для ио­низации лития лишь 5 в.) Это отражается на валентности атома лития. Свойства валентности, касающиеся направлений, свя­заны с волновой картиной внешнего электрона, но мы не будем сейчас входить в подробности. Становится понятной важность так называемого принципа запрета, утверждающего, что ни­какие два электрона не могут оказаться в точности в одном и том же состоянии (включая спин).

Принцип запрета несет также ответственность за крупно­масштабную стабильность вещества. Мы раньше уже объясняли, что отдельные атомы вещества не обваливаются благодаря прин­ципу неопределенности, тогда можно понять, почему не бывает так, чтобы два атома водорода прижались друг к другу сколь угодно тесно, почему все протоны не могут сойтись вплотную, образовав вокруг себя электронную тучу. Ответ, конечно, состоит в том, что поскольку в одном месте может находиться не более двух электронов с противоположными спинами, то атомы водорода вынуждены держаться поодаль друг от друга. Так что крупномасштабная стабильность вещества на самом деле есть следствие того, что электроны — это ферми-частицы. Конечно, если у двух атомов спины внешних электронов на­правлены в противоположные стороны, то они могут оказаться вплотную друг к другу. Именно так и возникает химическая связь. Оказывается, что два рядом стоящих атома обладают меньшей энергией, если между ними стоит электрон. Это своего рода электрическое притяжение двух положительных ядер к электрону между ними. Можно поместить пару электронов — коль скоро их спины противоположны — примерно посредине между двумя ядрами, и так возникает самая сильная из химических связей. Более сильной связи не бывает, потому что принцип запрета не позволит, чтобы в пространстве между атомами оказалось больше двух электронов. Считается, что молекула водорода выглядит примерно так, как изображено на фиг. 2.13.

Фиг. 2.13. Молекула водорода.

 

Хочется сказать еще об одном следствии из принципа за­прета. Вы помните, что если оба электрона в атоме гелия хотят оказаться поближе к ядру, то их спины обязательно должны смотреть навстречу друг другу. Допустим теперь, что нам бы захотелось расположить поблизости друг от друга два электро­на с одним и тем же спином, скажем, приложив столь фантасти­чески сильное магнитное поле, что спины выстроились бы в одну сторону. Но тогда два электрона не смогут занять одного положения в пространстве. Один из них вынужден будет занять другую геометрическую позицию (фиг. 2.14).

фиг. 2.14. Гелий с одним электроном в высшем энергетическом состоянии.

 

Более удаленный от ядра электрон будет обладать меньшей энергией связи. Поэ­тому энергия всего атома станет чуть выше. Иными словами, если два спина противоположны, то это приводит к намного более сильному взаимному притяжению.

Стало быть, существует взаимодействие, стремящееся рас­положить спины навстречу друг другу, когда электроны сбли­жаются. Если два электрона пытаются попасть в одно и то же место, то спины стремятся выстроиться навстречу друг другу. Эта кажущаяся сила, стремящаяся ориентировать спины в разные стороны, намного мощнее слабеньких сил, действующих между магнитными моментами двух электронов. Вы помните, что, когда мы толковали о ферромагнетизме, возникала загадка, отчего это электроны в разных атомах имеют столь сильную тенденцию выстраиваться параллельно. Хотя здесь еще нет количественного объяснения, но уже можно поверить в следую­щий процесс: электроны, окружающие один из атомов, взаимо­действуют при помощи принципа запрета с внешними элек­тронами, которые высвободились и бродят по кристаллу. Это взаимодействие заставляет спины свободных электронов и внутренних электронов принимать противоположные на­правления. Но свободные электроны и внутриатомные электро­ны могут выстроиться противоположно лишь при условии, что у всех внутренних электронов спины направлены одинаково (фиг. 2.15).

Фиг. 2.I5. Вероятный механизм, действующий в ферромагнитном кристалле. Спины электронов проводимости устанавливаются антипараллельно спинам неспаренных внутренних электронов.

 

Кажется весьма вероятным, что именно влияние принципа запрета, действующего косвенно через свободные электроны, кладет начало большим выстраивающим силам, от­ветственным за ферромагнетизм.

Упомянем еще один пример влияния принципа запрета. Мы уже говорили ранее, что ядерные силы, действующие между нейтроном и протоном, между протоном и протоном и между нейт­роном и нейтроном, одинаковы. Почему же так получается, что протон с нейтроном могут пристать друг к другу, образовав ядро дейтерия, а вот ядер просто с двумя протонами или просто с двумя нейтронами не существует? Действительно, дейтрон связан энергией около 2,2 Мэв, а соответствующей связи между парой протонов, которая бы создала изотоп гелия с атом­ным весом 2, не существует. Таких ядер не бывает. Комбина­ция двух протонов не дает связанного состояния.

Ответ складывается из двух эффектов: во-первых, из прин­ципа запрета; во-вторых, из того факта, что ядерные силы до­вольно чувствительны к направлению спина. Силы, действую­щие между нейтроном и протоном,—это силы притяжения; они чуть больше, когда спины параллельны, и чуть меньше, когда они направлены противоположно. Оказывается, что раз­личие между этими силами достаточно велико, чтобы дейтрон возникал лишь в том случае, когда спины нейтрона и протона параллельны, а когда спины противоположны, то притяжения не хватает на то, чтобы связать частицы воедино. Поскольку спины нейтрона и протона каждый равен 1/2и направлены они в одну сторону, то спин дейтрона равен единице. Мы знаем, однако, что двум протонам не разрешается сидеть друг на друге, если их спины параллельны. Если бы не было принципа запрета, два протона были бы связаны. Но раз они не могут существовать в одном месте и с одним и тем же направлением спина, ядра Не2 не существует. Протоны с противоположными спинами могли бы сойтись, но тогда им не хватило бы энергии связи для обра­зования стабильного ядра, потому что ядерные силы при про­тивоположных спинах чересчур слабы, чтобы связать пару нуклонов. В том, что силы притяжения между нейтронами и протонами с противоположными спинами существуют, можно убедиться из опытов по рассеянию. Сходные же опыты по рас­сеянию двух протонов с параллельными спинами показывают, что и между ними существует притяжение. Итак, принцип запрета помогает нам понять, почему дейтерий может сущест­вовать, а Не2 нет.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 376; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.