Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Опыты с профильтрованными атомами




Теперь возникает важный вопрос: что будет, если второй

прибор наклонить под некоторым углом, так чтобы ось его поля больше не была параллельной оси первого? Его можно не только наклонить, но и направить в другую сторону, напри­мер повернуть пучок поперек. Вначале для простоты возьмем такое расположение, при котором второй прибор Штерна — Герлаха повернут вокруг оси у на угол а (фиг. 3.6).

Фиг. 3.6. Два последовательно соединенных фильтра типа Штерна — Герлаха.

Второй повернут, относительно первого на угол a.

 

Такой при­бор мы обозначим буквой Т. Пусть мы теперь предприняли следующий опыт:

или такой опыт:

Что в этих случаях выйдет из дальнего конца?

Ответ таков. Если атомы по отношению к S находятся в опре­деленном состоянии, то по отношению к Т они не находятся в том же состоянии, состояние (+ S) не является также и состоя­нием (+ T). Однако имеется определенная амплитуда обна­ружить атом в состоянии (+Т), или в состоянии (О Т), или в состоянии (- Т).

Иными словами, как бы досконально мы ни убедились, что наши атомы находятся в определенном состоянии, факт остается фактом, что, когда такой атом проходит через прибор, наклоненный под другим углом, он вынужден, так сказать, «переориентироваться» (что происходит, не забывайте, по зако­нам случая). Если пропускать в каждый момент по одной части­це, то вопрос можно будет ставить только таким образом: какова вероятность того, что она пройдет насквозь? Некоторые прошед­шие сквозь S атомы очутятся в конце в состоянии (+Т), дру­гие — в состоянии (0 Т), третьи — в состоянии (- Т), и каж­дому состоянию отвечает своя вероятность. Эти вероятности можно вычислить, зная квадраты модулей комплексных ампли­туд; нам нужен математический метод для этих амплитуд, их квантовомеханическое описание. Нам нужно знать, чему равны различные величины типа

<-T+S >;

под этими выражениями мы подразумеваем амплитуду того, что атом, первоначально бывший в состоянии (+ S), может перейти в состояние (- Т) (что не равно нулю, если только S и Г не параллельны друг другу). Имеются и другие амплитуды, например

<+T |0 S> или <0 T |- S > и т. д.

Таких амплитуд на самом деле девять — это тоже матрица, и теория должна сообщить нам, как их вычислять. Подобно тому как F = m a сообщает нам, как подсчитать, что бывает в любых обстоятельствах с классической частицей, точно так же и законы квантовой механики позволяют нам определять ам­плитуду того, что частица пройдет через такой-то прибор. Центральный вопрос тогда заключается в том, как сосчитать для каждого данного угла а или вообще для какой угодно ориен­тации девять амплитуд:

Некоторые соотношения между этими амплитудами мы сразу можем себе представить. Во-первых, согласно нашим определениям, квадрат модуля

— это вероятность того, что атом, бывший в состоянии (+ S), придет в состояние (). Такие квадраты удобнее писать в эквивалентном виде

В тех же обозначениях число

дает вероятность того, что частица в состоянии (+ S) перей­дет в состояние (0 T), а

— вероятность того, что она перейдет в состояние (- Т). Но наши приборы устроены так, что каждый атом, входящий в прибор Т, должен быть найден в каком-то одном из трех со­стояний прибора Т', — атомам данного сорта нет других путей. Стало быть, сумма трех только что написанных вероятностей должна равняться единице. Получается соотношение

Имеются, конечно, еще два таких же уравнения для случаев, когда вначале было состояние (0 S) или (- S). Их очень легко написать, так что мы переходим к другим общим вопросам.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.