Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механика квантовой механики




Мы покажем вам сейчас, почему полезны эти законы. Пусть у нас есть атом в заданном состоянии (под этим мы подразумеваем, что он как-то был приготовлен), и мы хотим знать, что с ним бу­дет в таком-то опыте. Иными словами, мы начинаем с состояния j атома и хотим знать, каковы шансы, что он пройдет через при­бор, который пропускает атомы только в состоянии c. Законы го­ворят, что мы можем полностью описать прибор тремя комплексными числами <c| i > — амплитудами того, что каждое из базисных состояний окажется в состоянии c, и что мы, пустив атом в прибор, можем предсказать, что произойдет, если опишем состояние атома, задав три числа < i |j>,— амплитуды того что атом из своего первоначального состояния перейдет в лю­бое из трех базисных состояний. Это очень и очень важная идея, Рассмотрим другую иллюстрацию. Подумаем о следующей задаче. Начинаем с прибора S, затем имеется какая-то сложная мешанина, которую мы обозначаем A, а дальше стоит прибор R:

Под А мы подразумеваем любое сложное расположение прибо­ров Штерна — Герлаха — с перегородками и полуперегород­ками, под всевозможными углами, с необычными электрически­ми и магнитными полями,— словом, годится все, что вам придет в голову. (Очень приятно ставить мысленные эксперименты — тогда нас не тревожат никакие заботы, возникающие при реаль­ном сооружении приборов!) Задача состоит в следующем: с какой амплитудой частица, входящая в область A в состоянии (+ S), выйдет из него в состоянии (0 R), так что сможет пройти через последний фильтр R? Имеется стандартное обозначение для такой амплитуды:

<0 R | A | +S >.

Как обычно, это надо читать справа налево: < Конец | Через | Начало>.

Если случайно окажется, это А ничего не меняет, а просто яв­ляется открытым каналом, тогда мы пишем

<0 R |1|+ S >=<0 R |+ S >; (3.29)

эти два символа равнозначны. В более общих задачах мы можем заменить (+ S) общим начальным состоянием j, а (0 R) об­щим конечным состоянием c и захотеть узнать амплитуду

<c| A |j>.

Полный анализ прибора А должен был бы дать нам амплитуду <c| А |j> для каждой мыслимой пары состояний j и c — бес­конечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А?Это можно сде­лать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:

На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подска­зывают нам, как проанализировать проблему. Имеется опре­деленная совокупность амплитуд < i |+ S > того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состоя­ние j пройдет через последний фильтр в виде состояния (0 R). Для каждого допустимого пути существует амплитуда вида

<0 R | j >< j | A | i >< i |+ S >,

и полная амплитуда есть сумма членов, которые можно полу­чить из всех сочетаний i и j. Нужная нам амплитуда равна

Если (О Л) и (+ S) заменить общими состояниями c и j, то полу­чится выражение такого же рода; так что общий результат выглядит так:

Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами < j | А | i >, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту де­вятку чисел, мы сможем управиться с любой парой входных и выходных состояний j и c, если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказы­вается с помощью уравнения (3.32).

В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается де­вяткой чисел — амплитудами перехода в приборе из одного ба­зисного состояния в другое. Зная эти числа, можно подсчитать что угодно.

Девятка амплитуд, описывающая прибор, часто изобра­жается в виде квадратной матрицы, именуемой матрицей

< j | A | i >:

Вся математика квантовой механики является простым расши­рением этой идеи. Приведем несложный пример. Пусть име­ется прибор С, который мы хотим проанализировать, т. е. рассчитать различные < j | С|i >. Скажем, мы хотим знать, что случится в эксперименте типа

Но затем мы замечаем, что С просто состоит из двух частей: стоящих друг за другом приборов А и В. Сперва частицы про­ходят через А, а потом — через B, т. е. можно символически записать

Мы можем прибор С назвать «произведением» А и В. Допустим также, что мы уже знаем, как эти две части анализировать; таким образом, мы можем узнать матрицы А и В (по отношению к Т). Тогда наша задача решена. Мы легко найдем <c| С| j> для любых входных и выходных состояний. Сперва мы напишем

Понимаете, почему? (Подсказка: представьте, что между А к В поставлен прибор Т.) Если мы затем рассмотрим особый случай, когда j и cтакже базисные состояния (прибора Т), скажем i и j, то получим

Это уравнение дает нам матрицу прибора «произведения» С через матрицы приборов А и В. Математики именуют новую матрицу < j | С|i >, образованную из двух матриц < j | В|i > и < j | А | i > в соответствии с правилом, указанным в (3.36), матричным «произведением» ВА двух матриц В и А. (Заметьте, что порядок существен, АВ¹ВА.) Итак, можно сказать, что матрица для стоящих друг за другом двух частей прибора — это матричное произведение матриц для этих двух приборов порознь (причем первый прибор стоит в произведении справа). И каждый, кто знает матричную алгебру, поймет, что речь идет просто об уравнении (3.36).




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 382; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.