КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электрон в трехмерной решетке
Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Результаты оказываются очень похожими. Пусть имеется прямоугольная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что амплитуда прыжка к соседу в направлении х есть iAx / h; амплитуда прыжка в направлении у есть iAy/h, а амплитуда прыжка в направлении z есть iAz/h. Как же описать базисные состояния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами х, у, z, где (х, у, z) — одна из точек решетки. Если выбрать начало координат в одном из атомов, то все эти точки придутся на х=nха, y=nyb и z=nzс, где nх, ny, nz — три целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у точек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в некотором состоянии |y> окажется в этом базисном состоянии, есть С (х, у, z)=< электрон в х, у, z |y>. Как и прежде, амплитуды С (х, у, z) могут меняться во времени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом: Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое. Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, ky и kz следующим образом: Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k. И действительно, (11.23) можно переписать в векторных обозначениях: Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волновым числом k = (k 2 x+k 2 y+ k 2 z)1/2. Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относительных знаков и величин Ах,Ау и Аz. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой. Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к В простой кубической решетке с расстоянием а между узлами следует ожидать, что и Ах, и Аy, и Аг будут все равны друг другу (скажем, равны А), так что получилось бы или А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некоторой эффективной массой. В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состояние электрона около атома несимметрично) три коэффициента Ах, Аy и Az различны. Тогда «эффективная масса» электрона, сосредоточенного в узкой области, зависит от направления его движения. Может, например, оказаться, что у него разная инерция при движении в направлении х и при движении в направлении у. (Детали такого положения вещей иногда описываются с помощью «тензора эффективной массы».)
Дата добавления: 2015-06-04; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |