Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Состояния, зависящие от времени




В этом параграфе мы хотим подробнее обсудить поведение состояний в одномерной решетке. Если для электрона амплитуда того, что он окажется в хn, равна Сn, то вероятность найти его там будет | Сn |2. Для стационарных состояний, описанных уравнением (11.12), эта вероятность при всех хn одна и та же и со временем не меняется. Как же отобразить такое положение вещей, кото­рое грубо можно было бы описать, сказав, что электрон определенной энергии сосредоточен в определенной области, так что более вероятно найти его в каком-то одном месте, чем в другом? Этого можно добиться суперпозицией нескольких решений, похожих на (11.12), но со слегка различными значениями k и, следовательно, с различными энергиями. Тогда, по крайней мере при t =0, амплитуда Сn вследствие интерференции раз­личных слагаемых будет зависеть от местоположения, в точности так же, как получаются биения, когда имеется смесь волн раз­ной длины [см. гл. 48 (вып. 4)]. Значит, можно составить такой «волновой пакет», что в нем будет преобладать волновое число k 0, но будут присутствовать и другие волновые числа, близкие к k 0.

В нашей суперпозиции стационарных состояний амплитуды с разными k будут представлять состояния со слегка различ­ными энергиями и, стало быть, со слегка различными частотами; интерференционная картина суммарного Сn поэтому тоже будет меняться во времени, возникнет картина «биений». Как мы ви­дели в гл. 48 (вып. 4), пики биений [места, где |С(xn)|2 наи­большие] с течением времени начнут двигаться по х; скорость их движения мы назвали «групповой». Мы нашли, что эта груп­повая скорость связана с зависимостью k от частоты формулой

все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для кото­рого Сn меняется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной dw/dk, где w= E/h.

Фиг. 11.5. Вещественная часть С(хn) как функция х для суперпозиции нескольких состояний с близкими энергиями.

 

Подстав­ляя (11.16) вместо Е, получаем

Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и клас­сическая физика.

В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится

где m эфф — постоянная. Избыточная «энергия движения» элект­рона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная mэфф, именуемая «эффектив­ной массой», дается выражением

Заметьте еще, что можно написать

Если мы решим назвать mэффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.

Не забывайте, что mэфф ничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом про­странстве).

Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему при­ходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 346; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.