Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Краткие теоретические сведения. Научиться работать с сетью Хопфилда newhop, исследовать устойчивость сети и её сходимость




Цель работы

Сеть Хопфилда

Лабораторная работа № 4

Научиться работать с сетью Хопфилда newhop, исследовать устойчивость сети и её сходимость.

 

Американский исследователь Хопфилд в 80-х годах 20-го века предложил специальный тип нейросетей. Названные в его честь сети Хопфилда являются рекуррентными или сетями с обратными связями и предназначены для распознавания образов. Обобщенная структура этой сети представляется, как правило, в виде системы с обратной связью выхода с входом.

В сети Хопфилда входные сигналы нейронов являются одновременно и выходными сигналами сети: xi (k) =yi (k- 1), при этом возбуждающий вектор особо не выделяется. В классической системе Хопфилда отсутствует связь нейрона с собственным выходом, что соответствует , а вся матрица весов является симметричной: wij=wji

. (1)

Симметричность матрицы весов гарантирует сходимость процесса обучения. Процесс обучения сети формирует зоны притяжения некоторых точек равновесия, соответствующих обучающим данным. При использовании ассоциативной памяти мы имеем дело с обучающим вектором , либо с множеством этих векторов, которые в результате проводимого обучения определяют расположение конкретных точек притяжения (аттракторов).

Каждый нейрон имеет функцию активации сигнум со значениями :

. (2)

Это означает, что выходной сигнал i -го нейрона определяется функцией:

, (3)

где N обозначает количество нейронов, N=n. Часто постоянная составляющая bi, определяющая порог срабатывания отдельных нейронов, равна 0. Тогда циклическое прохождение сигнала в сети Хопфилда можно представить соотношением:

(4)

с начальным условием .

В процессе функционирования сети Хопфилда можно выделить два режима: обучения и классификации. В режиме обучения на основе известных обучающих выборок подбираются весовые коэффициенты wij. В режиме классификации при зафиксированных значениях весов и вводе конкретного начального состояния нейронов возникает переходный процесс, протекающий в соответствии с выражением (2) и заканчивающийся в одном из локальных устойчивых положений, задаваемом биполярным вектором со значениями , для которого .

Обучение не носит рекуррентного характера. Достаточно ввести значения (правило Хебба) весов, выразив их через проекции вектора точки притяжения эталонного образа:

, (5)

В соответствии с этим правилом сеть дает правильный результат при входном примере, совпадающим с эталонным образцом, поскольку:

, (6)

так как вследствие биполярности значений элементов вектора всегда .

При вводе большого количества обучающих выборок для k= 1,2, …p веса wij подбираются согласно обобщенному правилу Хебба в соответствии с которым:

. (7)

Благодаря такому режиму обучения веса принимают значения, определяемые усреднением множества обучаемых выборок. В случае множества обучаемых выборок актуальным становится вопрос о стабильности ассоциативной памяти.

Сеть Хопфилда [2] является автоассоциативной сетью (рис. 12). Дискретная сеть Хопфилда имеет следующие характеристики: она содержит один слой элементов; каждый элемент связывается со всеми другими элементами, но не связан с самим собой; за один шаг работы обновляется только один элемент сети; элементы обновляются в случайном порядке; выход элемента ограничен значениями 0 или 1.

 

Рис. 12. Схема архитектуры модифицированной сети Хопфилда

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.