КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерии оценки увеличения проницаемости цитоплазматической мембраны 4 страница
Фактор времени. С увеличением времени прохождения через тело постоянный эффект действия электрического тока возрастает. Так, если действие тока напряжением 1000 В в течение 0,02 с не сопровождается развитием выраженных нарушений, то при экспозиции в 1 с оно неизбежно приводит к смертельному исходу. Частота переменного тока. Считается, что постоянным эффектом (возникновение фибрилляции желудочков) обладает переменный ток частотой 40-60 Гц. Переменные токи частотой 1000000 Гц и выше не являются патогенными, зато при высоком напряжении (токи Тесла, д’Арсонваля, диатермические токи) они оказывают тепловое действие и применяются с лечебной целью. Состояние реактивности организма. Утомление, ослабление внимания, легкое и умеренное алкогольное опьянение, гипоксия, перегревание, тиреотоксикоз, сердечно-сосудистая недостаточность снижают резистентность организма к электротравме. Тяжесть поражения электротравмой в значительной степени снижается при эмоциональном напряжении, вызванном ожиданием действия тока, в состоянии наркоза и глубокого (близкого к наркозу) опьянения. Механизмы повреждающего действия электрического тока. Электротравма может вызвать местные (знаки тока, ожоги) и общие изменения в организме. М е с т н ы е р е а к ц и и о р г а н и з м а н а э л е к т р о т р а в м у. Знаки тока, ожоги возникают главным образом на местах входа и выхода тока в результате превращения электрической энергии в тепловую (тепло Джоуля-Ленца). Знаки тока появляются на коже, если температура в точке прохождения тока не превышает 120°С, и представляют собой небольшие образования серовато-белого цвета («пергаментная» кожа), твердой консистенции, окаймленные волнообразным возвышением. В ряде случаев по окружности поврежденной ткани проступает ветвистый рисунок красного цвета, обусловленный параличом кровеносных сосудов. При температуре в точке прохождения тока свыше 120°С возникают ожоги: контактные - от выделения тепла при прохождении тока через ткани, оказывающие сопротивление, и термические - при воздействии пламени вольтовой дуги. Последние являются наиболее опасными. О б щ и е р е а к ц и и о р г а н и з м а н а э л е к т р о т р а в м у. При прохождении через тело электрический ток вызывает возбуждение нервных рецепторов и проводников, скелетной и гладкой мускулатуры, железистых тканей. Это приводит к возникновению тонических судорог скелетных и гладких мышц, что может сопровождаться отрывным переломом и вывихом конечностей, спазмом голосовых связок, остановкой дыхания, повышением кровяного давления, непроизвольным мочеиспусканием и дефекацией. Возбуждение нервной системы и органов внутренней секреции приводит к «выбросу» катехоламинов (адреналин, норадреналин), изменяет многие соматические и висцеральные функции организма. Важное значение в механизмах поражающего эффекта электрического тока имеет его электрохимическое действие (электролиз). Преодолев сопротивление кожного покрова, электрический ток вызывает нарушение равновесия в клетках различных тканей, изменяет их биологический потенциал, приводит к поляризации клеточных мембран: на одних участках тканей - у анода скапливаются отрицательно заряженные ионы (возникает кислая реакция), у катода скапливаются положительно заряженные ионы (возникает щелочная реакция). В результате значительным образом изменяется функциональное состояние клеток. Вследствие передвижения белковых молекул в участках кислой реакции под анодом возникает коагуляция белков (коагуляционный некроз), в участках щелочной реакции под катодом - набухание коллоидов (колликвационный некроз). Процессы электролиза в сердечном синцитии могут вызвать укорочение рефрактерной фазы сердечного цикла, приводящей к развитию кругового нарастающего ритма его работы. Вызываемое электротравмой поражение дыхательного и сосудодвигательного центров обусловлено повреждением нервных клеток в результате деполяризации их мембран и коагуляции протоплазмы. При несмертельной электротравме возникает судорожное сокращение мышц с временной потерей сознания, нарушением сердечной деятельности и (или) дыхания; может наступить клиническая смерть (мнимая). При своевременном оказании помощи пострадавшие ощущают головокружение, головную боль, тошноту, светобоязнь; могут сохраняться нарушения скелетной мускулатуры. Непосредственной причиной смерти при электротравме являются остановка дыхания и остановка сердца. Остановка дыхания может быть обусловлена: 1) поражением дыхательного центра; 2) спазмом позвоночных артерий, снабжающих кровью дыхательный центр; 3) спазмом дыхательной мускулатуры; 4) нарушением проходимости дыхательных путей вследствие ларингоспазма. Остановка сердца может возникнуть вследствие: 1) фибрилляции желудочков; 2) спазма коронарных сосудов; 3) поражения сосудодвигательного центра; 4) повышения тонуса блуждающего нерва.
2.8. ПОВРЕЖДАЮЩЕЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
2.8.1. Общая характеристика повреждающего действия ионизирующих излучений Ионизирующее излучение может действовать на организм как из внешних, так и из внутренних источников облучения. Человек подвергается действию ионизирующего излучения в производственных условиях, работая с рентге- новской аппаратурой, на ядерных реакторах и ускорителях заряженных частиц (бетатроны, циклотроны, синхрофазотроны, линейные ускорители), с радиоактивными изотопами, при добыче и переработке радиоактивных руд. В клинической практике больные принимают курс облучения с лечебными целями. Наконец, облучение может быть следствием применения ядерного оружия и при аварийных выбросах технологических продуктов атомных предприятий в окружающую среду. Источником внутреннего облучения могут быть радиоактивные вещества, поступающие в организм с пищей, водой, через кожные покровы. Возможно комбинированное действие внешнего и внутреннего облучения. Ионизирующие излучения, обладая способностью вызывать ионизацию атомов и молекул, характеризуются высокой биологической активностью. По своей природе все ионизирую-щие излучения подразделяются на электромагнитные (рентгеновские излучения и g-лучи, сопровождающие радиоактивный распад) и корпускулярные (заряженные частицы: ядра гелия - a-лучи, электроны - b-лучи, протоны, p-мезоны, а также нейтроны, не несущие электрического заряда). Повреждающее действие различных видов ионизирующей радиации зависит от величины плотности ионизации в тканях и их проникающей способности. Чем короче путь прохождения фотонов и частиц в тканях, тем больше вызванная ими плотность ионизации и сильнее повреждающее действие (табл. 4). Наибольшая ионизирующая способность у a-лучей, имеющих длину пробега в биологических тканях несколько десятков микрометров, наименьшая - у g-лучей, обладающих большой проникающей способностью. Биологические эффекты разных видов ионизирующей радиации определяются не только общим количеством поглощенной энергии, но и распределением ее в тканях. Для сравнительной количественной оценки биологического действия различных видов излучения определяют их относительную биологическую эффективность (ОБЭ). Наибольшей биологической эффективностью характеризуются a-излучения, протоны и быстрые нейтроны, ОБЭ для которых равняется 10. В качестве критерия для определения ОБЭ используются показатели смертности, степень гематологических и морфологических изменений в тканях и органах, действие на половые железы и др. В связи с этим ОБЭ не является постоянной величиной (табл. 5). Биологические эффекты определяются не только видом и величиной поглощенной дозы излучения, но также ее мощностью. Единицей измерения дозы является грей (Гр), а для сравнительной биологической оценки различных видов излучений используется специальная единица - бэр. Чем выше мощность дозы, тем больше биологическая активность. Повреждающее действие ионизирующей радиации при кратковременном облучении более выражено, чем при длительном облучении в одной и той же дозе. Облучение может быть однократным, дробным и длительным. При дробном (фракционированном) и длительном облучении поражение организма вызывается более высокими суммарными дозами. Тяжесть поражения ионизирующей радиацией зависит также от площади облучаемой поверхности тела (общее и местное), особенности индивидуальной реактивности, возраста, пола и функционального состояния организма перед облучением. Считается, что физическая нагрузка, изменение температуры тела и другие воздействия, отражающиеся на метаболизме, оказывают заметное влияние на радиоустойчивость. Молодые и беременные животные более чувствительны к действию ионизирующей радиации (табл. 6). Даже в одном организме различные клетки и ткани отличаются по радиочувствительности. Наряду с радиочувствительными тканями (кроветворные клетки костного мозга, половые железы, эпителий слизистой тонкого кишечника) имеются устойчивые, радиорезистентные (мышечная, нервная и костная).
2.8.2. Механизмы действия ионизирующей радиации на живые организмы. Общие вопросы патогенеза
Биологическое действие ионизирующей радиации выражается в развитии местных лучевых реакций (ожоги и катаракты) и особого генерализованного процесса - лучевой болезни. В процессе радиационного повреждающего действия условно можно выделить три этапа: а) первичное действие ионизирующего излучения; б) влияние радиации на клетки; в) действие радиации на целый организм. Первичное действие ионизирующего излучения на живую ткань проявляется ионизацией, возбуждением атомов и молекул и образованием при этом свободных радикалов НО•, НО2•и перекиси водорода (Н2О2), время существования которых не превышает 10-5 - 10-6с (прямое действие радиации). Ионизация и возбуждение атомов и молекул облученной ткани обусловливают пусковой механизм биологического действия излучений. Свободные радикалы вызывают цепные химические реакции, вступают во взаимодействие с наиболее реактивными белковыми структурами ферментных систем (SH-группами) и переводят их в неактивные дисульфидные группы (S = S). Непрямое (косвенное) действие ионизирующей радиации связано с радиационно-химическими изменениями структуры ДНК, ферментов, белков и т. д., вызываемыми продуктами радиолиза воды или растворенных в ней веществ, обладающими высокой биохимической активностью и способными вызывать реакцию окисления по любым связям. При окислении ненасыщенных жирных кислот и фенолов образуются липидные (перекиси, эпоксиды, альдегиды, кетоны) и хиноновые первичные радиотоксины, угнетающие синтез нуклеиновых кислот, подавляющие активность различных ферментов, повышающие проницаемость биологических мембран и изменяющие диффузионные процессы в клетке. В результате этого возникают нарушения процессов обмена, функциональные и структурные повреждения клеток, органов и систем организма.
2.8.3. Действие ионизирующей радиации на клетки Ионизирующие излучения вызывают различные реакции клеток - от временной задержки размножения до их гибели. Еще в 1906 г. И. Бергонье и Л. Трибондо отмечали, что радиочувствительность ткани пропорциональна пролиферативной активности и обратно пропорциональна степени дифференцированности составляющих ее клеток. По радиочувствительности клеток ткани можно расположить в следующем убывающем порядке: лимфоидные органы (лимфатические узлы, селезенка, зобная железа), костный мозг, семенники, яичники, слизистая оболочка желудочно-кишечного тракта, эпителий кожи и др. Радиочувствительность клеток зависит от объема генетического материала, активности энергообеспечивающих систем, интенсивности метаболизма, активности и соотношения ферментов, обеспечивающих репарацию клетки, от устойчивости биологических мембран и их репарируемости, а также от наличия в клетке предшественников радиотоксинов. В основе радиационного поражения клеток лежат нарушения ультраструктуры органелл и связанные с этим изменения обмена веществ. Малые дозы ионизирующего излучения вызывают обратимые, не летальные изменения клетки. Они появляются сразу или через несколько минут после облучения (ингибирование нуклеинового обмена, изменения проницаемости клеточных мембран, возникновение липкости хромосом, образование зерен и глыбок в ядерном веществе, задержка митозов) и с течением времени исчезают. При больших дозах облучения в клетках наступают летальные изменения, приводящие к их гибели до вступления в митоз (интерфазная гибель) либо в момент митотического деления (митотическая, или репродуктивная, гибель). Интерфазной гибели предшествует изменение проницаемости ядерной, митохондриальной и цитоплазматической мембран. Изменение мембран лизосом приводит к освобождению и активации ДНК-азы, РНК-азы, катепсинов, фосфатазы, ферментов гидролиза мукополисахаридов и др. Угнетается клеточное дыхание, наблюдается деградация дезоксирибонуклеинового комплекса в ядре. Основной причиной репродуктивной гибели клеток являются структурные повреждения хромосом (структурные аберрации), возникающие под влиянием облучения. Считается, что радиочувствительность ядра значительно выше, нежели цитоплазмы. Это и играет решающую роль в исходе облучения клетки. Гибель клеток ведет к опустошению тканей, нарушению их структуры и функции.
2.8.4. Действие ионизирующей радиации на организм Действие ионизирующей радиации может быть местным (лучевые ожоги, некрозы, катаракты) и общим (лучевая болезнь). Местное действие ионизирующей радиации (переоблучение тканей при лучевой терапии, попадание на кожу радиоактивных изотопов) чаще проявляется в виде лучевых ожогов. Мягкое рентгеновское и b-излучение, проникающие в ткани на незначительную глубину, вызывают ожоги кожи; высокоэнергетическое тормозное g-излучение и нейтроны, обладающие большей проникающей способностью, могут поражать и глубоколежащие ткани. Течение лучевых ожогов характеризуется развитием последовательно сменяющихся периодов (ранняя лучевая реакция, скрытое, острое воспаление, восстановление), длительность и выраженность проявления которых зависят от тяжести поражения (I степени - 8-12 Гр - легкие; II степени - 12-20 Гр - средней тяжести; III степени - более 20 Гр - тяжелые). При облучении дозами более 20 Гр погибают не только кожа, но и подкожная клетчатка, фасции, мышцы и даже кости. У больных развиваются лихорадка, высокий лейкоцитоз, тяжелый болевой синдром. Лучевая болезнь. При внешнем равномерном облучении организма в зависимости от дозы ионизирующей радиации возникают поражения от едва уловимых реакций со стороны отдельных систем до острых форм лучевой болезни. При облучении в дозах 1-10 Гр развивается типичная форма острой лучевой болезни, при которой наиболее четко проявляются основные патогенетические закономерности клинического формирования ее отдельных периодов, имеет место преимущественное поражение костного мозга (костномозговой синдром). В диапазоне доз 10-20 Гр возникает кишечная, при дозах 20-80 Гр - токсемическая (сосудистая) и при дозах выше 80 Гр - церебральная формы лучевой болезни. Типичную форму острой лучевой болезни по тяжести поражения, определяемой поглощенной дозой излучения, подразделяют на четыре группы: I - легкой степени (1-2 Гр); II - средней степени (2-4 Гр); III - тяжелой степени (4-6 Гр); IV - крайне тяжелой степени (свыше 6 Гр). В ее течении выделяют четыре фазы: 1) первичной острой реакции; 2) мнимого клинического благополучия (скрытая фаза); 3) разгара болезни; 4) восстановления. Ф а з а п е р в и ч н о й о с т р о й р е а к- ц и и организма человека возникает в зависимости от дозы в первые минуты или часы после облучения. В это время характерно некоторое возбуждение, головная боль, общая слабость. Затем наступают диспепсические расстройства (тошнота, рвота, потеря аппетита), со стороны крови - кратковременный нейтрофильный лейкоцитоз со сдвигом влево, абсолютная лимфопения. Клинические проявления болезни - это не только следствие прямого повреждающего действия ионизирующей радиации на радиочув-ствительные системы, но и свидетельство ранних нарушений нервно-регуляторных и гуморальных взаимоотношений. Наблюдаются повышенная возбудимость нервной системы, связанная с ней лабильность (неустойчивость) вегетативных функций - колебания артериального давления, ритма сердца и т. д. Активация гипофиз-адреналовой системы приводит к усиленной секреции гормонов коры надпочечников, что в данной ситуации может иметь приспособительное значение. При дозах 8-10 Гр наблюдается развитие шокоподобного состояния с падением артериального давления, кратковременной потерей сознания, повышением температуры тела, развитием поноса. Продолжительность фазы первичной острой реакции 1-3 дня. Ф а з а м н и м о г о к л и н и ч е с к о г о б л а г о п о л у ч и я характеризуется включением в патологический процесс защитных механизмов организма. В связи с этим самочувствие больных становится удовлетворительным, проходят клинически видимые признаки болезни. Длительность скрытой фазы зависит от дозы облучения и колеблется от 10-15 дней до 4-5 нед. При сравнительно небольших дозах (до 1 Гр) начальные легкие функциональные реакции не переходят в развернутую клиническую картину и заболевание ограничивается затухающими явлениями начальных реакций. При очень тяжелых формах поражения скрытая фаза вообще отсутствует. Однако в это время нарастает поражение системы крови: в периферической крови прогрессирует лимфопения на фоне лейкопении, снижается содержание ретикулоцитов и тромбоцитов. В костном мозге развивается опустошение (аплазия). Могут наблюдаться атрофия гонад, подавление ранних стадий сперматогенеза, атрофические изменения в тонком кишечнике и коже. Неврологическая симптоматика постепенно сглаживается. Ф а з а р а з г а р а б о л е з н и характеризуется тем, что самочувствие больных вновь резко ухудшается, нарастает слабость, повышается температура тела, появляются кровоточивость и кровоизлияния в кожу, слизистые оболочки, желудочно-кишечный тракт, мозг, сердце и легкие. В результате нарушения обмена веществ и диспепсических расстройств (потеря аппетита и поносы) резко снижается масса тела. На первый план выходит поражение системы крови. Развиваются глубокая лейкопения, тромбоцитопения, выраженная анемия; увеличивается скорость оседания эритроцитов (СОЭ); в костном мозге - картина опустошения с начальными признаками регенерации. Наблюдаются гипопротеинемия, гипоальбуминемия, повышение содержания остаточного азота и снижение уровня хлоридов. Угнетается иммунитет, в результате чего развиваются инфекционные осложнения, аутоинфекция и аутоинтоксикация. Продолжительность фазы выраженных клинических проявлений от нескольких дней до 2-3 нед. При облучении в дозе свыше 2,5 Гр без проведения лечебных мероприятий возможен смертельный исход. Ф а з а в о с с т а н о в л е н и я характеризуется постепенной нормализацией нарушенных функций, общее состояние больных заметно улучшается. Снижается до нормы температура тела, исчезают геморрагические и диспепсические проявления, со 2-5-го мес нормализуется функция потовых и сальных желез, возобновляется рост волос. Происходит постепенно восстановление показателей крови и обмена веществ. Период восстановления охватывает 3-6 мес, в тяжелых случаях лучевого поражения может затягиваться на 1-3 года, при этом возможен переход болезни в хроническую форму. Кишечная форма острой лучевой болезни возникает при облучении лабораторных животных в дозах 10-20 Гр, вызывающих смерть на 3-5-е сут после облучения. При вскрытии животных всегда констатируют гибель основной массы кишечного эпителия, оголение ворсин, их уплощение и деструкцию. У человека при облучении в дозах 10-20 Гр смерть чаще наступает на 7-10-е сут. Основными признаками болезни являются тошнота, рвота, кровавый понос, повышение температуры тела, могут наблюдаться полная паралитическая непроходимость кишечника и вздутие живота. Развиваются геморрагия и глубокая лейкопения с полным отсутствием лимфоцитов в периферической крови, а также картина сепсиса. Причиной смерти при кишечной форме острой лучевой болезни являются дегидратация организма, сопровождающаяся потерей электролитов и белка, развитие необратимого шока, связанного с действием токсических веществ микробного и тканевого происхождения. Токсемическая форма характеризуется выраженными гемодинамическими нарушениями главным образом в кишечнике и печени, парезом сосудов, тахикардией, кровоизлияниями, тяжелой интоксикацией и менингеальными симптомами (отек мозга). Наблюдаются олигурия и гиперазотемия вследствие поражения почек. Смерть наступает на 4-7-е сут. Церебральная форма острой лучевой болезни возникает при облучении в дозах выше 80 Гр. Смерть при этом наступает через 1-3 дня после облучения, а при действии очень больших доз (150-200 Гр) смертельный исход может иметь место даже в ходе самого облучения (смерть под лучом) или через несколько минут - часов после воздействия, а также при локальном облучении головы в дозах 100-300 Гр. Эта форма лучевого поражения характеризуется развитием судорожно-паралитического синдрома, нарушением крово- и лимфообращения в центральной нервной системе, сосудистого тонуса и терморегуляции. Несколько позднее появляются функциональные нарушения пищеварительной и мочевыделительной систем, происходит прогрессивное снижение кровяного давления. Причиной смерти при церебральной форме острой лучевой болезни являются тяжелые и необратимые нарушения центральной нервной системы, характеризующиеся значительными структурными изменениями, гибелью клеток коры головного мозга и нейронов ядер гипоталамуса. В поражении нервной системы главную роль играют непосредственное повреждающее действие ионизирующей радиации на ткань, а также первичные радиотоксины в виде Н2О2и других веществ, образующихся за счет окисления ненасыщенных жирных кислот и фенолов. Единичные наблюдения последствий облучения людей в дозах, превышающих 100 Гр, свидетельствуют о возникновении у них расстройств регуляции высшей нервной деятельности, кровообращения и дыхания. Хроническая лучевая болезнь возникает при длительном облучении организма в малых, но превышающих допустимые дозах. Выделяют два основных варианта болезни: обусловленной внешним общим или местным облучением, а также в результате поступления в организм равномерно и неравномерно распределяющихся радиоактивных нуклидов. Заболевание отличается постепенным развитием и длительным волнообразным течением, сроки возникновения и характер изменений при этом определяются интенсивностью и суммарной дозой облучения. Начальный период заболевания характеризуется развитием нестойкой лейкопении, признаками астенизации, вегетативно-сосудистой неустойчивостью и др. Развернутому периоду заболевания свойственна недостаточность физиологической регенерации наиболее радиочувствительных тканей в сочетании с функциональными изменениями в деятельности нервной и сердечно-сосудистой систем. Период восстановления характеризуется сглаживанием деструктивных и отчетливым преобладанием репаративных процессов в наиболее радиопоражаемых тканях. По тяжести хроническую лучевую болезнь, обусловленную общим облучением, подразделяют на три группы: легкой (I), средней (II) и тяжелой (III) степени. Хроническая лучевая болезнь I степени (легкая) характеризуется нерезко выраженными нервно-регуляторными нарушениями в деятельности различных органов и систем, умеренной нестойкой лейкопенией и тромбоцитопенией. При хронической лучевой болезни II степени (средней) тяжести присоединяются функциональные нарушения нервной, сердечно-сосудистой и пищеварительной систем. Прогрессируют лейкопения и лимфопения, количество тромбоцитов уменьшено; в костном мозге - явления гипоплазии кроветворения. При хронической лучевой болезни III степени (тяжелой) развивается анемия, явления выраженной гипоплазии кроветворения, атрофические процессы в слизистой желудочно-кишечного тракта, присоединяются инфекционно-септические осложнения, геморрагический синдром и нарушения кровообращения. Крайне тяжелые формы встречаются редко, при этом у больных развиваются поносы и кахексия. Клиническую картину хронической лучевой болезни, обусловленной внутренним облучением, формирует поражение одного или нескольких критических органов, в которых депонируются поступившие в организм радиоактивные нуклиды. Отдаленные последствия действия радиации могут развиться как после общего, так и местного облучения организма спустя ряд лет и носят неопухолевый или опухолевый характер. К неопухолевым формам в первую очередь относят сокращение продолжительности жизни, гипопластические состояния в кроветворной ткани, слизистых оболочках органов пищеварения, дыхательных путей, в коже и других органах; склеротические процессы (цирроз печени, нефросклероз, атеросклероз, лучевые катаракты и др.), а также дисгормональные состояния (ожирение, гипофизарная кахексия, несахарное мочеизнурение). Одной из частых форм отдаленных последствий лучевых поражений является развитие опухолей в критических органах при облучении инкорпорированными излучателями (a- и b-излучение), а также радиационные лейкозы.
2.9. ДЕЙСТВИЕ ФАКТОРОВ КОСМИЧЕСКОГО ПОЛЕТА. ГРАВИТАЦИОННАЯ ПАТОФИЗИОЛОГИЯ К факторам, оказывающим наиболее существенное влияние на состояние организма человека в космических полетах, относятся: 1) ускорения и вызываемые ими перегрузки на активных участках полета (при взлете космического корабля и во время спуска); 2) невесомость; 3) стрессорные воздействия, в частности эмоциональные. Кроме того, на состояние космонавтов оказывают влияние изменения ритма суточной периодики, в различной степени выраженная сенсорная изоляция, замкнутая среда обитания с особенностями микроклимата, периодически некоторая запыленность искусственной атмосферы космического корабля, шум, вибрация и т.д. Воздействие ионизирующей радиации учитывается при обеспечении космических кораблей радиационной защитой, при планировании выходов человека в открытый космос. Ускорения, перегрузки. Ускорения выражены в начале полета при взлете космического корабля и в конце полета при спуске корабля с орбиты (вхождение в плотные слои атмосферы и приземление). Ускорение - векторная величина, характеризующая быстроту изменений скорости движения или направления движения. Величина ускорения выражается в метрах в секунду в квадрате (м/с2). При движении с ускорением в противоположном направлении действует сила инерции. Для ее обозначения применяется термин «перегрузка». Величины перегрузок, как и величины ускорений, выражаются в относительных единицах, обозначающих во сколько раз при данном ускорении возрастает вес тела по сравнению с весом в условиях обычной земной гравитации (в условиях статического покоя или равномерного прямолинейного движения). Величины ускорений и перегрузок обозначают буквой G - начальная буква слова «гравитация» (притяжение, тяготение). Величина земной гравитации принимается за относительную единицу. При свободном падении тела в безвоздушном пространстве она вызывает ускорение 9,8 м/с2. При этом в условиях земного притяжения сила, с которой тело давит на опору и испытывает противодействие со стороны ее, обозначается как вес. В авиационной и космической медицине перегрузки различают по ряду показателей, в том числе по величине и длительности (длительные - более 1 с, ударные - менее 1 с), скорости и характеру нарастания (равномерные, пикообразные и т. д.). По соотношению вектора перегрузки к продольной оси тела человека различают продольные положительные (в направлении от головы к ногам), продольные отрицательные (от ног к голове), поперечные положительные (грудь - спина), поперечные отрицательные (спина - грудь), боковые положительные (справа налево) и боковые отрицательные (слева направо). Значительные по величине перегрузки обусловливают перераспределение массы крови в сосудистом русле, нарушение оттока лимфы, смещение органов и мягких тканей, что в первую очередь отражается на кровообращении, дыхании, состоянии центральной нервной системы. Перемещение значительной массы крови сопровождается переполнением сосудов одних регионов организма и обескровливанием других. Соответственно изменяются возврат крови к сердцу и величина сердечного выброса, реализуются рефлексы с барорецепторных зон, принимающих участие в регуляции работы сердца и тонуса сосудов. Здоровый человек наиболее легко переносит поперечные положительные перегрузки (в направлении грудь-спина). Большинство здоровых лиц свободно переносят в течение одной минуты равномерные перегрузки в этом направлении величиной до 6-8 единиц. При кратковременных пиковых перегрузках их переносимость значительно возрастает. При поперечных перегрузках, превышающих предел индивидуальной переносимости, нарушается функция внешнего дыхания, изменяется кровообращение в сосудах легких, резко учащаются сокращения сердца. При возрастании величины поперечных перегрузок возможно механическое сжатие отдельных участков легких, нарушение кровообращения в малом круге, снижение оксигенации крови. При этом в связи с углублением гипоксии учащение сокращений сердца сменяется замедлением.
Дата добавления: 2015-06-04; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |