Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Изучение температурной зависимости сопротивления металлов и полупроводников




 

 

Фрагмент 1

При повышении температуры полупроводника электроны, «задействованные» в ковалентных связях между атомами кристаллической решетки, получают дополнительную энергию и могут перейти в свободное состояние, т.е. стать носителями заряда и участвовать в проводимости. Минимально необходимая для этого энергия D W называется энергией активации полупроводника.

В чистых полупроводниках, состоящих из атомов одного химического элемента, электроны переходят из валентной зоны ВЗ (рис. 44) в свободную зону СЗ (которая в этом случае становится зоной проводимости ЗП). При этом электроны должны преодолеть энергетический барьер D W, равный ширине запрещенной зоны ЗЗ. Освободившаяся «вакансия» в ковалентной связи – так называемая дырка – может быть занята электроном из соседней связи и т.д. Под действием электрического поля дырка будет вести себя как положительный носитель заряда и также участвовать в проводимости. Таким образом, в чистом полупроводнике проводимость в равной степени осуществляется как отрицательными носителями – свободными электронами, так и положительными – дырками. Из приведенных выше рассуждений следует, что концентрации свободных электронов nэ в свободной зоне и дырок nд в валентной зоне в таком полупроводнике одинаковы: nэ = nд .

Как известно, внутри кристалла концентрация электронов, обладающих энергией W, определяется на основе распределения Ферми-Дирака

(1)

где WF – энергия Ферми; k – постоянная Больцмана; Т – абсолютная температура. В чистых полупроводниках уровень Ферми WF расположен посередине запрещенной зоны ЗЗ (см. рис. 44); поэтому для электронов, перешедших в зону проводимости, разность W - WF = . При температурах до тысячи кельвин произведение kT не превышает 0,1 эВ, в то время как ширина запрещенной зоны составляет несколько десятых эВ, – следовательно, единицей в квадратных скобках выражения (1) можно пренебречь про сравнению с экспоненциальным слагаемым и распределение Ферми переходит в классическое распределение Больцмана:

(2)

Так как электропроводность вещества s прямо пропорциональна концентрации носителей заряда (s ~ nэ ), а его электрическое сопротивление R в свою очередь обратно пропорционально электропроводности (), с учетом (2) можно представить температурную зависимость сопротивления полупроводника в виде

(3)

где величина R ¥ характеризует сопротивление при бесконечно высокой температуре.

Аналогичные закономерности справедливы и для примесной проводимости полупроводников. В полупроводниках n -типа валентность примеси (донора) на единицу превышает валентность основного вещества. Поэтому «лишние» валентные электроны особенно легко переходят в свободное состояние без образования дырки в валентной зоне (рис. 45, а).

 

 
 

Рис. 45

 

Для таких полупроводников nэ >> nд (электроны являются основными, а дырки – неосновными носителями). Уровни донорной примеси располагаются вблизи «дна» свободной зоны, и энергия активации примеси D W значительно меньше ширины запрещенной зоны.

В полупроводниках р -типа валентность примеси (акцептора) на единицу меньше, чем у атомов основного вещества. «Лишняя» вакансия в ковалентной связи атома примеси легко превращается в дырку без предварительного перехода электронов в свободную зону (рис. 45, б); в таких полупроводниках основными носителями являются дырки. А неосновными – свободные электроны (nэ << nд). Уровни акцепторной примеси лежат вблизи «потолка» валентной зоны, которая становится зоной проводимости, и энергия активации D W при этом также меньше ширины запрещенной зоны.

При высоких температурах практически все донорные уровни освобождаются, а акцепторные – занимаются электронами; таким образом, исчерпывается механизм примесной проводимости. Дальнейшее повышение температуры все больше способствует переходам электронов из валентной зоны в свободную, как это имеет место в чистых полупроводниках (собственная проводимость).

Итак, независимо от наличия и характера примеси, на сопротивление полупроводников весьма существенно влияет их температура. Зависимость R (T) принято характеризовать термическим коэффициентом сопротивления a, представляющим собой относительное изменение сопротивления при изменении температуры на один кельвин:

(4)

Подставляя в (4) зависимость (3), получим:

Таким образом, в отличие от металла, у полупроводника термический коэффициент сопротивления, во-первых, отрицателен, во-вторых, не является постоянным (зависит от температуры). Это говорит о том, что сопротивление полупроводника уменьшается с ростом температуры, причем не по линейному закону.

Сам факт явно выраженной температурной зависимости сопротивления позволяет использовать ПТС в качестве датчика температуры, т.е. определять его температуру по измеренному сопротивлению. Это можно сделать либо с помощью градуировочного графика зависимости R (T), либо по известным параметрам этой зависимости (значениям R ¥ и D W). Определение этих параметров является одной из целей данной лабораторной работы.

Для линеаризации зависимости (3) прологарифмируем ее (см. пример 10 на с. 30):

и введем обозначения:

(5)

после чего получим

Таким образом, величины ln R и связаны между собой линейной зависимостью. Измерив сопротивление полупроводника при различных значениях температуры, можно найти коэффициенты K и b этой зависимости либо графическим способом, либо методом наименьших квадратов. После этого параметры исходной зависимости (3) легко определить, используя выражения (5):

 

; (6)

 

. (7)

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 2490; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.