Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модель Кронига-Пенни




Теорема Блоха позволяет аналитически решить задачу об электроне в периодическом поле кристаллической решетки в приближении слабой связи при некоторых упрощающих предположениях. Основная трудность в решении уравнения (2.1) связана с невозможностью точно записать вид функции U (r). Поэтому часто периодическую зависимость функции U (r) заменяют более простой функцией с точно таким же периодом. В модели Кронига-Пенни ограничиваются рассмотрением одномерной задачи, в которой периодический потенциал заменяется цепочкой прямоугольных потенциальных ям (рис. 2.4). Ширина каждой ямы а, они отделены друг от друга прямоугольными потенциальными барьерами высотой U 0 и шириной b. Период повторения ям с = а + b.

Стационарное уравнение Шредингера будет иметь в этом случае вид

(2.7)

Начало системы координат (точку х = 0) выберем так, чтобы она совпадала с левым краем потенциальной ямы, как это показано на рис. 2.4,б. Tогда потенциальная функция

, (2.8)

В соответствии с теоремой Блоха волновая функция электрона (x) может быть представлена в виде

. (2.9)

 

Рис.2.4. Изменение потенциальной энергии электрона: а - в реальном кристалле; б - в модели Кронига-Пенни

Индексы n и k упущены для простоты записи. Функция u (x) (блоховский множитель) имеет период c

Подставляя (2.9) в уравнение (2.7), получим дифференциальное уравнение для блоховского множителя

(2.10 a)

для электронов, находящихся внутри потенциальных ям, и

(2.10 б)

для электронов, находящихся вне потенциальных ям. В этих уравнениях E k - кинетическая энергия электрона

.

Общее решение уравнения (2.10 а) для электронов внутри потенциальных ям может быть записано в виде

(2.11 а)

где - некоторый параметр, который может быть найден подстановкой решения в виде (2.11 а) в исходное уравнение (2.10 а). Эта подстановка приводит к следующему значению :

В области вне потенциальных ям при условии, что высота потенциального барьера U 0 выше полной энергии электрона Е, решение уравнения (2.10 б) имеет вид

(2.11 б)

где

.

Постоянные A, B, C и D в формулах (2.11 а) и (2.11 б) находятся как обычно из граничных условий. Граничные условия требуют, чтобы функция u (x) и ее первая производная в местах скачков потенциала, т. е. на стенках потенциальных ям, были непрерывны. Эти требования приводят к следующей системе уравнений:

. (2.12)

Система уравнений (2.12) после подстановки в нее функций и , согласно равенствам (2.10 а) и (2.10 б), преобразуется в систему линейных однородных алгебраических уравнений, в которых неизвестными являются коэффициенты A, B, C и D. Определитель этой системы будет равен нулю (только при этом условии система линейных однородных уравнений имеет отличные от нуля решения), если выполняется следующее равенство:

. (2.13)

Выражение (2.13) можно значительно упростить, если допустить, что ширина барьера стремится к нулю , а его высота - к бесконечности , но таким образом, чтобы произведение оставалось постоянным . При этих условиях выражение (2.13) преобразуется к виду:

, (2.14)

где

Поскольку - параметр, определяемый энергией Е электрона, а k - волновой вектор электрона, то выражение (2.14) представляет зависимость E(k), т. е. дисперсионное соотношение для электрона в кристаллической решетке. Это дисперсионное соотношение можно записать в явном виде, решив уравнение (2.14) относительно при фиксированном значении параметра p.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1612; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.