КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергия Ферми. Влияние температуры на распределение Ферми-Дирака
Функция распределения Ферми-Дирака. Уровень Ферми. Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид: , (3.4) здесь EF - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина EF называется энергией Ферми. Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > EF совершенно свободны при абсолютном нуле. Если Е < EF при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля. Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми. Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре. Если Т 0К, то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2. Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.
При условии (3.5) экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду (3.6) Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана. Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна (3.7) Таким образом, функция распределения Ферми-Дирака для дырок аналогична функции распределения для электронов, если в ней изменить знаки показателей экспонент. Это хорошо согласуется с представлением о том, что дырки являются носителями положительного заряда. Газ носителей заряда, подчиняющийся статистике Ферми-Дирака, называется вырожденным. Если носители заряда подчиняются статистике Максвелла-Больцмана, то они называются невырожденными.
Дата добавления: 2015-06-04; Просмотров: 2108; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |