КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Взаимно перпендикулярные плоскости
Прямая линия, перпендикулярная плоскости. Прямая линия перпендикулярна плоскости, если она перпендикулярна любым двум пересекающимся прямым плоскости. Однако распознать перпендикулярность прямой линии и плоскости в общем случае сложно, т.к. прямой угол проецируется на плоскость проекции в натуральную величину, когда одна из его сторон параллельна данной плоскости проекций. Следовательно, если на некоторой плоскости å (рис. 4.19) провести две пересекающиеся прямые, одна из которых горизонталь h || p, а другая - фронталь f || p2, то перпендикулярная к плоскости å прямая a проецируется на плоскость p1 перпендикулярно h 1, а плоскость p2 перпендикулярна f 2. Итак: если прямая линия перпендикулярна к плоскости, то её горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали, а её фронтальная проекция – перпендикулярна фронтальной проекции фронтали, а также к одноимённым следам. На рис. 4.19 рассмотрены случаи построения перпендикуляра из точки K к треугольнику АВС и к плоскости å, заданной следами. Если плоскости заданы не следами, то первоначально всегда требуется определить горизонталь и фронталь в плоскости.
Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Для построения плоскости перпендикулярной к данной достаточно определить прямую линию ей перпендикулярную. Через перпендикуляр к плоскости можно провести множество плоскостей, перпендикулярных данной (рис. 4.20а). Рассмотрим построение одной из плоскостей, перпендикулярной данной плоскости (c Ç d) (рис. 4.20б). Определим горизонталь h и фронталь ¦ данной плоскости. Из произвольной точки K восставим перпендикуляр a на горизонтальной проекции a 1 ^ h 1, а на фронтальной проекции a 2 ^ ¦2. Дополним прямую a до плоскости пересекающейся с ней произвольной прямой b. Плоскость (a Ç b) перпендикулярна плоскости (c Ç d).
Вопросы и задачи для самоконтроля 1. Какими способами можно задать плоскость на чертеже? 2. Как можно перейти от любого способа задания плоскости к способу задания следами? 3. При каких условиях точка и прямая принадлежат плоскости? 4. Какие прямые линии в плоскости называются главными, и как они направлены? 5. Сформулируйте условия параллельности прямой линии плоскости и условия параллельности плоскостей. 6. Когда прямой угол между прямой линией и плоскостью проецируется в натуральную величину? 7. В каких случаях плоскости пересекаются по линиям частного положения: a) прямыми уровня; b) проецирующими прямыми. 8. Определите линию пересечения двух плоскостей, заданных параллельными прямыми (a || b) и пересекающимися прямыми (c || d) (задать самостоятельно). 9. Определите точку пересечения прямой (общего положения) с плоскостью S (общего положения.) Глава 5. Способы преобразования проекций Преобразование проекций используется для наиболее выгодного изображения геометрических фигур при их исследовании и решение методических и позиционных задач. В итоге при преобразовании чертежа объекты занимают частное положение относительно плоскостей проекций. Существуют несколько способов преобразования. - способ замены плоскостей проекций. - способ вращения вокруг проецирующих прямых и прямых уровня. - способ плоскопараллельного перемещения. Принципиальная разница первого способа (замены плоскостей проекций) в том, что объект не меняет своего положения в пространстве, а вводятся новые дополнительные плоскости проекций. При использовании способов вращения и плоскопараллельного перемещения – система плоскостей остаётся неизменной, а объект перемещается относительно системы плоскостей.
Дата добавления: 2015-06-29; Просмотров: 1239; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |