КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Пример расчета (задача № 14)
Пример расчета (задача № 14) Для балки (рис. 6.11) задано: l 1 = 2 l 2, P = q l 1, m = q .
Требуется: 1. Определить степень статической неопределимости системы и составить уравнение совместности деформаций; 2. Определить коэффициенты и решить каноническое уравнение метода сил; 3. Построить эпюры моментов М и поперечных сил Q. 1. Определить степень статической неопределимости системы и составить уравнение совместности деформаций. Используя зависимость W из пункта 6.1, подсчитаем степень статической неопределимости системы. D = 1, Ш = 0, С = 4 ® W = 3×1 - 2×0 - 4= -1, следовательно система один раз статически неопределима. Основную систему получим путем отбрасывания опоры в точке А и замены ее действия неизвестным усилием X 1 (рис. 6.12). Каноническое уравнение метода сил в данном случае запишется в следующем виде: Рис. 6.12 d11 × X 1 + D1 P = 0. 2. Определить коэффициенты и решить каноническое уравнение метода сил. От силы X 1 строим эпюру M 1 (рис. 6.13). Для определения величины d11 воспользуемся выражением (6.12). Фактически эпюру M 1 нужно умножить саму на себя и проинтегрировать это произведение: Для определения свободного коэффициента в каноническом уравнении строим в основной системе эпюру моментов MP от внешней нагрузки (рис. 6.14) и в соответствии с (6.7) получаем:
При вычислении D1 P было учтено, что эпюры М 1 и МP имеют разный знак, т.к. вызывают растяжение разных волокон - об этом говорит отрицательный знак при D1 P . Кроме этого, криволинейный участок в эпюре МP был представлен как разность трапеции и параболического сегмента. Напишем уравнение совместности деформаций в виде E I d11 × X 1 + E I D1 P = 0, и, подставляя найденные величины перемещений, получим: , откуда X 1 = . 3. Построить эпюры изгибающих моментов и поперечных сил. Окончательную эпюру изгибающих моментов получим по формуле: .
Последняя формула означает, что окончательное значение момента в любом сечении определяется путем сложения значения момента в эпюре МP с величиной момента в эпюре М 1, увеличенной на коэффициент ql 2 (рис. 6.15, а). Эпюру QОК для заданной системы можно построить следующим образом. Заменив в заданной системе опорные реакции RA на X 1, получим статически определимую эквивалентную систему, тождественную заданной. Далее, определяя остальные опорные реакции RC и RD и по методу сечений составляя аналитические выражения изменения поперечных сил на каждом участке, по ним определив ординаты в характерных сечениях, строится эпюра QОК (рис. 6.15, б).
Дата добавления: 2015-06-30; Просмотров: 323; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |