КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример. Вычисление невязок треугольников
Вычисление невязок треугольников
. Полюсное условие, выраженное через синусы углов, имеет вид: . (8) Свободный член полюсного условия вычисляется по формуле: , где - соответственно, произведения синусов углов числителя и знаменателя дроби полюсного условия, не должен превышать значения , которое вычисляется по формуле: . . Базисное условие возникает в сети триангуляции, если имеются две или более стороны, длины которых известны (измерены или вычислены по известным координатам). В сети триангуляции, изображенной на рис. 1.1, известны длины базисных сторон между пунктами 2-3 - и пунктами 4-5 - . Для составления базисного условия вычисляют по теореме синусов последовательно связующие стороны треугольников II, III, IV, начиная от известной стороны : ; ; . После объединения формул в одну получаем: . Свободный член базисного условия, вычисляемый по формуле , (9) не должен превышать допустимого значения . Вычисления представлены в таблице 10. В том случае, когда свободный член какого либо условного уравнения не удовлетворяет установленным допускам, необходимо выявить и устранить причины, приведшие к недопустимой величине. Если угловые измерения в сети не содержат недопустимых ошибок, выполнены качественно и удовлетворяют предъявляемым к ним требованиям, можно приступать к окончательному уравниванию сети триангуляции. Таблица 9
Вывод: Значение невязки полюсного условия не превосходит допустимого значения. Таблица 10
Дата добавления: 2015-07-02; Просмотров: 975; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |