Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Общий член ряда имеет вид




Решение

Общий член ряда имеет вид .

Проверим условия теоремы Лейбница.

1) Члены ряда по абсолютной величине убывают:

2) Общий член ряда стремится к нулю

Рассмотрим ряд, составленный из абсолютных величин . Применим признак Даламбера , следовательно ряд сходится абсолютно.

Ответ: ряд сходится по признаку Лейбница.

Пример 6. Найти интервал сходимости степенного ряда .

Составим ряд из модулей членов ряда и вычислим

По признаку Даламбера ряд сходится при , отсюда или . Следовательно, ряд абсолютно сходится при .

Исследуем сходимость ряда в граничных точках.

При и из данного ряда получаем соответственно числовые ряды и . Из интегрального признака сходимости следует, что эти ряды сходятся абсолютно, поэтому интервалом сходимости данного ряда является промежуток .

Ответ: ряд сходится внутри промежутка .

Пример 7. Вычислить приближенно с указанной степенью точности




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.