Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Изменения белков пищевых продуктов




Технологические свойства продуктов

 

Технологические характеристики, или технологические свойства сырья, полуфабрикатов и готовой кулинарной продукции проявляются при их технологической обработке. Их можно подразделить на механические (прочность), физические (теплоемкость, плотность и др.), химические свойства (изменение состава, образование новых веществ) и особенности структуры (взаимное расположение и взаимосвязь составляющих продукт частей и компонентов).

Технологические свойства обуславливают пригодность продукта к тому или иному способу обработки и изменение их массы, объема, формы, консистенции, цвета и других показателей в ходе обработки, т.е. формирование качества готовой продукции.

 

 

Изменения белков пищевых продуктов, которые наблюдаются при производстве полуфабрикатов и тепловой кулинарной обработке продуктов, влияют на выход, структурно-механические, органолептические и другие показатели качества продукции.

Глубина физико-химических изменений белков определяется их природными свойствами, характером внешних воздействий, концентрацией белков и другими факторами.

Белки — важнейшая составная часть пищи человека и живот­ных. Белки представляют собой высокомолекулярные природные полимеры, молекулы которых построены из остатков аминокис­лот. Аминокислоты — соединения гетерофункциональные, в их молекуле содержится несколько функциональных групп — ами­ногруппа (NH2), карбоксильная группа (СООН) и имеющие раз­личное строение радикалы.

Белки образуются при связывании аминогруппы с карбоксиль­ной группой соседней аминокислоты (так называемая пептидная связь).

В природе обнаружено около 200 аминокислот, однако в по­строении белков участвуют лишь 20, их называют протеиногенными. Восемь протеиногенных аминокислот являются незаменимыми, они синтезируются только растениями и не синтезируются в на­шем организме. Это валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан. Иногда в их число включа­ют условно незаменимые гистидин и аргинин, которые не синте­зируются в детском организме. Аминокислотный состав белков оп­ределяет биологическую ценность пищи.

По строению молекул белки подразделяются на фибриллярные, или нитевидные (например, белки мышечной ткани животных), и глобулярные, или шаровидные (это большинство белков растений и других объектов). На свойства белков, проявляющиеся при перера­ботке пищевого сырья, оказывает влияние их растворимость в раз­личных растворителях. По этому признаку белки подразделяются на водорастворимые — альбумины, растворимые в растворах соли — глобулины, спиртов — проламины, щелочей — глютелины. Наиболь­шей биологической ценностью обладают альбумины и глобулины, они составляют главную часть экстрактивных веществ мясных бульо­нов. Водонерастворимые белки пшеницы (глиадин и глютенин) иг­рают значительную роль при замесе теста из пшеничной муки.

Определенное значение имеют фосфопротеиды — белки, со­держащие фосфорную кислоту. К ним относятся казеин — глав­ный белок молока, вителлин — белок яичного желтка, ихтулин — белок, содержащийся в икре рыб.

Часть белков выполняет каталитические функции. Белковые катализаторы называются фер­ментами. Подавляющее большинство процессов в пищевом сырье и продуктах при их хранении и переработке происходит при учас­тии ферментов. Ферменты являются строго специфическими со­единениями и катализируют определенную реакцию между конк­ретными соединениями.

Ферменты по их функциям классифицируют следующим об­разом:

1. Оксидоредуктазы — окислительно-восстановительные фермен­ты;

2. Трансферазы — ферменты, катализирующие перенос атом­ных группировок (например, остатков фосфорной кислоты, моносахаров, аминокислот) от одного соединения к другому;

3. Гидролазы — ферменты, катализирующие расщепление орга­нических соединений при участии воды;

4. Лиазы — ферменты, катализирующие отщепление каких-либо групп от соединений;

5. Изомеразы — ферменты, катализирующие превращения орга­нических соединений в их изомеры;

6. Лигазы (синтетазы) — ферменты, катализирующие соедине­ние двух молекул с расщеплением пирофосфатной связи в нукле-озидтрифосфатах.

Из других важных свойств, которые белки проявляют при пере­работке пищевого сырья, необходимо назвать их способность связывать воду, или гидрофильность. При этом белки набухают, что сопровождается их частичным растворением, увеличением массы и объема.

Молекулы воды обладают полярностью, и их можно представить в виде диполей с зарядами на концах, равными по значению, но противоположенными по знаку. При контакте с белком диполи воды адсорбируются на поверхности белковой молекулы, ориентируясь вокруг полярных групп белка. Таким образом, основная часть воды, более или менее прочно связываемая в пищевых продуктах белками, является адсорбционной. Различают два вида адсорбции: ионную и молекулярную. Объясняется это постоянным наличием на поверхности белковой молекулы двух видов полярных групп: свободных и связанных.

Свободные полярные группы (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот и др.) диссоциируют в растворе, определяя величину суммарного заряда белковой молекулы. Адсорбирование воды ионизированными свободными полярными группами белка называется ионной адсорбцией.

Связанные полярные группы (пептидные группы главных полипептидных цепей, гидроксильные, сульфгидрильные и др.) присоединяют молекулы воды за счет так называемой молекулярной адсорбции.

Величина молекулярной адсорбции воды постоянна для каждого вида белка, величина ионной адсорбции изменяется с изменением реакции среды. В изоэлектрической точке, когда степень диссоциации молекул белка минимальная и заряд белковой молекулы близок к нулю, способность белка связывать воду наименьшая. При сдвиге рН среды в ту или иную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается заряд белковых молекул усиливается гидратация белка. В технологических процессах свойства белков используют для увеличения их водосвязывающей способности.

Адсорбционная вода удерживается белками вследствие образования между их молекулами и водой водородных связей.

В растворах небольшой концентрации молекулы белка полно-
стью гидратированы.

В концентрированных белковых растворах и обводненных бел-
ковых студнях при добавлении воды происходит дополнительная
гидратация белков.

Дополнительная гидратация белков в концентрированных рас-
творах наблюдается, например, при добавлении к яичной массе,
предназначенной для изготовления омлетов, воды или молока.

В студне молекулы белка с помощью межмолекулярных связей
разной природы образуют пространственную сетку, в ячейках
которой удерживается вполне определенное для данного белка
количество воды.

Способность белка образовывать студень обусловлена конфи-
гурацией его белковых молекул. Чем больше асимметрия моле-
кул белка (отношение длины к толщине или диаметру), тем
меньшая концентрация белка необходима для образования студня.
Вода, иммобилизованная в ячейках пространственной сетки студ-
ня, участвует в образовании его структуры, приближающейся
к структуре твердого тела (студии способны сохранять форму,
механическую прочность, упругость, пластичность). Белковые студии большинства продуктов обводнены
больше, чем концентрированные растворы. Например, в миофиб-
риллах мышечных волокон теплокровных животных содержится (
15 — 20)% белков, в саркоплазме — (25 — 30)%,

Гидратация белков имеет большое практическое значение при
производстве полуфабрикатов: при добавлении к измельченным
животным или растительным продуктам воды, поваренной соли и
других веществ и при перемешивании измельченных компонентов
гидратация белков состоит из протекающих одновременно про-
цессов растворений и набухания. При гидратации повышается
липкость массы, в результате чего она хорошо формуется в
изделия (полуфабрикаты), предназначенные для тепловой кули-
нарной обработки.

Дополнительная гидратация белков имеет место при добавле-
нии к измельченному на мясорубке мясу воды. В рубленые бифш-
тексы и фрикадели добавляют воды 10% массы мяса, в фарш для
пельменей — 20%.

Сухие белки муки, крупы, бобовых, содержащиеся в продуктах
в виде частиц высохшей цитоплазмы и алейроновых зерен, при
контакте с водой набухают, образуя сплошной более или менее
обводненный студень. Примером гидратации такого
типа является приготовление теста, в процессе которого белки
муки при контакте с водой набухают, образуя клейковину.

От степени гидратации белков зависит такой важнейший показатель качества готовой продукции, как сочность.

Денатурация белков — сложный процесс, при котором под вли­янием температуры, механического воздействия, химических аген­тов происходит изменение вторичной,третичной и четвертичной структуры белковой макромолекулы, т. е. ее нативной простран­ственной конфигурации. Первичная структура (аминокислотная цепочка), а следовательно, и химический состав белка не изменя­ются.

Наибольшее практическое значение имеет
тепловая денатурация белков. При нагревании белков усиливается
тепловое движение атомов и полипептидных цепей в белковых
молекулах, в результате чего разрушаются так называемые сла-
бые поперечные связи между полипептидными цепями (напри-
мер, водородные), а также ослабляются гидрофобные и другие
взаимодействия между боковыми цепями. В результате этого из-
меняется конформация полипептидных цепей в белковой моле-
куле. У глобулярных белков развертываются белковые глобулы
с последующим свертыванием по новому типу; прочные (кова-
лентные) связи белковой молекулы (пептидные, дисульфидные)
при такой перестройке не нарушаются. Тепловую денатурацию
фибриллярного белка коллагена можно представить в виде плав-
ления, так как в результате разрушения большого числа попереч-
ных связей между полипептидными цепями фибриллярная струк-
тура его исчезает, а коллагеновые волокна превращаются в сплош-
ную стекловидную массу.

В молекулярной перестройке белков при денатурации актив-
ная роль принадлежит воде, которая участвует в образовании но-
вой конформационной структуры денатурированного белка. Пол-
ностью обезвоженные белки, выделенные в кристаллическом виде
очень устойчивы и не денатурируют даже при длительном нагре-
вании до температуры 1000С и выше. Денатурирующий эффект
внешних воздействий тем сильнее, чем выше гидратация белков
и ниже их концентрация в растворе.

Денатурация сопровождается изменениями важнейших свойств белка: потерей биологической активности, видовой специфичности, способности к гидратации (растворению и набуханию); улучшением атакуемости протеолетическими ферментами (в том числе пищеварительными); повышением реакционной способности белков; агрегированием белковых молекул.

Агрегирование – это взаимодействие денатурированных молекул белка, в результате которого образуются межмолекулярные связи, как прочные, например, дисульфидные, так и многочисленные слабые.

Следствием агрегирования белковых молекул является образование более крупных частиц. Последствия дальнейшего агрегирования частиц белка различны в зависимости от концентрации белка в растворе. В мало концентрированных растворах образуются хлопья белка, выпадающие в осадок или всплывающие на поверхность жидкости (часто с образованием пены).

Примерами агрегирования такого типа являются выпадение в осадок хлопьев денатурированного лактоальбумина (при кипячении молока), образование хлопьев и пены белков на поверхности мясных и рыбных бульонов. Концентрация белков в этих растворах не превы-
шает 1%.

При денатурации белков в более концентрированных белковых
растворах в результате их агрегирования образуется сплошной
студень, удерживающий всю содержащуюся в системе воду. Такой
тип агрегирования белков наблюдается при тепловой обработке
мяса, рыбы, яиц и различных смесей на их основе.

Белки в состоянии более или менее обводненных студней
при тепловой денатурации уплотняются, т. е. происходит их дегид-
ратация с отделением жидкости в окружающую среду.
Реологические
характеристики таких уплотненных студней зависят от темпера-
туры, рН среды и продолжительности нагревания.

Денатурация белков в студнях, сопровождающаяся их уплот-
нением и отделением воды, происходит при тепловой обработке
мяса, рыбы, варке бобовых, выпечке изделий из теста.

При значениях рН среды, близких к изоэлектрической точке
белка, денатурация происходит при более низкой температуре и
сопровождается максимальной дегидратацией белка. Смещение
рН среды в ту или иную сторону от изоэлектрической точки
белка способствует повышению его термостабильности. Так, вы-
деленный из мышечной ткани рыб глобулин Х, который имеет
изоэлектрическую точку при рН 6,0, в слабокислой среде (рН 6,5)
денатурирует при 500 С, в нейтральной (рН 7,0) при 800 С.

Реакция среды влияет и на степень дегидратации белков в
студнях при тепловой обработке продуктов. Направленное измене-
ние реакции среды широко используется в технологии для улучше-
ния качества блюд. Так, при припускании птицы, рыбы, тушении
мяса, мариновании мяса и рыбы перед жаркой добавляют кислоту,
вино или другие кислые приправы для создания кислой среды со
значениями рН, лежащими значительно ниже изоэлектрической
точки белков продукта. В этих условиях дегидратация белков в студнях снижается и готовый продукт получается более сочным.


В кислой среде набухает коллаген мяса и рыбы, снижается
его температура денатурации, ускоряется переход в глютин, в ре-
зультате чего готовый продукт получается более нежным.

Пенообразование — способность белков образовывать высоко­концентрированные системы жидкость-газ (пены). Это свойство белков широко используются при получении кондитерских изде­лий (бисквиты, пастила, зефир, суфле).

Деструкция. Молекула белков под влиянием ряда факторов может разру­шаться или вступать во взаимодействие с другими веществами с образованием новых продуктов.

Для доведения продукта до
полной готовности денатурированные белки нагревают при темпе-
ратурах, близких к 1000С, более или менее продолжительное вре-
мя. В этих условиях наблюдаются дальнейшие изменения белков,
связанные с разрушением их макромолекул. На первом этапе
изменений от белковых молекул могут отщепляться такие летучие
продукты, как аммиак, сероводород, фосфористый водород, угле-
кислый газ и др. Накапливаясь в продукте и окружающей среде,
эти вещества участвуют в образовании вкуса и аромата готовой
пищи. При длительном гидротермическом воздействии происходит
деполимеризация белковой молекулы с образованием водораство-
римых азотистых веществ. Примером деструкции денатурирован-
ного белка является переход коллагена в глютин.

Деструкция белков имеет место при производстве некоторых
видов теста. В этом случае разрушение внутримолекулярных свя-
зей в белках происходит при участии протеолитических фермен-
тов, содержащихся в муке и вырабатываемых дрожжевыми клет-
ками. Протеолиз белков клейковины положительно влияет на ее
эластичность и способствует получению выпечных изделий высо-
кого качества. Однако этот процесс может иметь и отрицательные
последствия, если активность протеаз муки слишком высокая
(мука из недозревшего зерна и пр.).

В ряде случаев деструкция белков с помощью протеолитиче-
ских ферментов является целенаправленным приемом, способст-
вующим интенсификации технологического процесса, улучшению
качества готовой продукции, получению новых продуктов пита-
ния. Примером может служить применение препаратов протеоли-
тических ферментов (порошкообразных, жидких, пастообразных) для размягчения жесткого мяса, ослабления клейковины теста,
получения белковых гидролизатов.

Для взрослого человека достаточно (1 —1,5) г белка в сутки на 1 кг массы тела, т. е. примерно (85 — 100) г. Для детей потребность в белке значительно выше: до 1 года — более 4 г белка на 1 кг массы тела, для 2—3-летних — 4 г, для 3 —5-летних — 3,8 г, для 5—7-летних — 3,5 г. Повышенная потребность в белке у детей объясняется тем, что в растущем организме преобладают синтетические процессы и бе­лок пищи необходим не только для поддержания азотного равно­весия, но и обеспечения роста и формирования тела. Недостаток в пище белка приводит к задержке и полному прекращению роста организма, вялости, похуданию, тяжелым отекам, поносам, вос­палению кожных покровов, малокровию, понижению сопротив­ляемости организма к инфекционным заболеваниям и т. д.

Наиболее близки к идеальному белку животные белки. Боль­шинство растительных белков имеют недостаточное содержание одной или более незаменимых аминокислот. Например, в белке пшеницы недостаточно лизина. Кроме того, растительные белки усваиваются в среднем на 75%, тогда как животные — на 90 % и более. Доля животных белков должна составлять около 55 % от об­щего количества белков в рационе. Опыты показали, что один жи­вотный или один растительный белок обладают меньшей биоло­гической ценностью, чем смесь их в оптимальном соотношении.

Поэтому лучше сочетать мясо с гарниром (гречихой или картофе­лем), хлеб с молоком и т.д.

Проблема повышения биологической ценности продуктов пи­тания издавна является предметом серьезных научных исследова­ний. В аминокислотном балансе человека за счет преобладания в рационе продуктов растительного происхождения намечается де­фицит трех аминокислот: лизина, треонина и метионина. Повы­шение биологической ценности продуктов питания может быть осуществлено путем добавления химических препаратов (напри­мер, концентратов или чистых препаратов лизина) и натуральных продуктов, богатых белком вообще и лизином, в частности. При­менение натуральных продуктов представляет несомненные пре­имущества перед обогащением продуктов химическими препара­тами, поскольку во всех натуральных продуктах белки, витамины и минеральные вещества находятся в естественных соотношениях и в виде природных соединений. Среди различных натуральных продуктов особого внимания ввиду высокого содержания лизина заслуживают молочные (цельное молоко, сухое обезжиренное и цельное), творог, молочные сыворотки (творожная, подсырная) в нативном, а также концентрированном и высушенном виде.

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1786; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.