КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дисперсия
Размах вариации Характеристики рассеяния результатов измерений Для математико-статистического анализа результатов выборки знать только характеристики положения недостаточно. Одна и та же величина среднего значения может характеризовать совершенно различные выборки. Поэтому кроме них в статистике рассматривают также характеристики рассеяния (вариации, или колеблемости) результатов.
Определение. Размахом вариации называется разница между наибольшим и наименьшим результатами выборки, обозначается R и определяется R = X max - X min. Информативность этого показателя невелика, хотя при малых объёмах выборки по размаху легко оценить разницу между лучшим и худшим результатами спортсменов. Определение. Дисперсией называется средний квадрат отклонения значений признака от среднего арифметического. Для несгруппированных данных дисперсия определяется по формуле s2 = , (1)
где Хi – значение признака, - среднее арифметическое. Для данных, сгруппированных в интервалы, дисперсия определяется по формуле , где хi – среднее значение i интервала группировки, ni – частоты интервалов. Для упрощения расчётов и во избежание погрешностей вычисления при округлении результатов (особенно при увеличении объёма выборки) используются также другие формулы для определения дисперсии. Если среднее арифметическое уже вычислено, то для несгруппированных данных используется следующая формула:
s2 = , для сгруппированных данных: .
Эти формулы получаются из предыдущих раскрытием квадрата разности под знаком суммы. В тех случаях, когда среднее арифметическое и дисперсия вычисляются одновременно, используются формулы: для несгруппированных данных: s2 = , для сгруппированных данных:
.
3. Среднее квадратическое (стандартное) отклонение Определение. Среднее квадратическое (стандартное) отклонение характеризует степень отклонения результатов от среднего значения в абсолютных единицах, т. к. в отличие от дисперсии имеет те же единицы измерения, что и результаты измерения. Иначе говоря, стандартное отклонение показывает плотность распределения результатов в группе около среднего значения, или однородность группы. Для несгруппированных данных стандартное отклонение можно определить по формулам
s = ,
s = или s = .
Для данных, сгруппированных в интервалы, стандартное отклонение определяется по формулам:
,
или .
Дата добавления: 2015-07-02; Просмотров: 1417; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |