Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поворот осей координат




 

Под поворотом осей координат понимают такое преобразование ко­ординат, при котором обе оси поворачиваются на один и тот же угол, а начало координат и масштаб остаются неизменными.

Пусть новая система O1x1y1 получена поворотом системы Оху на угол α.

Пусть М — произвольная точка плоскости, (х;у) — ее координаты в старой системе и (х';у') — в новой системе.

Введем две полярные системы координат с общим полюсом О и полярными осями Ох и Ох1 (масштаб одинаков). Полярный радиус r в обеих системах оди­наков, а полярные углы соответственно равны α + φ и φ, где φ — полярный угол в новой полярной системе.

Рис. 29.

По формулам перехода от полярных координат к прямоугольным имеем

 

Полученные формулы называются формулами поворота осей. Они по­зволяют определять старые координаты (х; у) произвольной точки М че­рез новые координаты (х';у') этой же точки М, и наоборот.

Если новая система координат O1x1y1 получена из ста­рой Оху путем параллельного переноса осей координат и последующим поворотом осей на угол α (см. рис. 30), то путем введения вспомогательной системы легко по­лучить формулы

 

выражающие старые координаты х и у произвольной точ­ки через ее новые координаты х' и у'.

 

Рис. 30.

 




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 4160; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.