Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение.





Решение.

 

Пример 6.2.Дана матрица . Найти её нормы, определённые по (6.5), (6.6), (6.7).

Для вычисления последней нормы найдём матрицу , сопряжённую матрице , перемножим их и найдём наибольшее собственное число произведения:

, ,

Следуя [9], докажем теперь, что норма матрицы , определяемая равенством (6.5), является согласованной с нормой вектора , определяемой равенством (6.2), в соответствии с определением согласованности, которое даётся равенством (6.1).

Доказательство.Рассмотрим вектор . По определению (6.2) имеем:

Отсюда следует, что имеет место неравенство

(6.8)

Мы доказали, что значение , которое вычисляется по формуле (6.5), является какой-то из верхних границ для отношения , где - любой ненулевой вектор. Для того, чтобы доказать, что норма (6.5) является согласованной с нормой (6.2), требуется показать, что она является супремумом, т.е. наименьшей из всех верхних границ, что может иметь место хотя бы для одного какого-либо вектора . Предположим, что достигается при , т.е.

(6.9)

Введём некоторый вектор следующим образом:

(6.10)

Тогда по определению (6.2) имеем:

(6.11)

Снова рассмотрим вектор , теперь - для вектора (6.10). По формуле (6.2) получим:

(6.12)

Если в правую часть (6.12) вместо индекса подставить какой-то произвольный номер, то это выражение может только уменьшиться. Положим . Продолжая (6.12), с учётом (6.10), (6.11) и (6.9) последовательно находим

.

Отсюда получаем

(6.13)

Неравенство (6.13) имеет место для специально подобранного вектора , который определяется равенством (6.10). В то же время, неравенство (6.8) выполняется для любого вектора , в т.ч. и для вектора (6.10). Отсюда, сравнивая (6.8) и (6.13), получаем то, что и требовалось доказать:

Доказательства согласованности норм (6.3), (6.6) и (6.4), (6.7) также не вызывают затруднений и здесь не приводятся (см. [9]).

Приведём также без доказательства важный результат ([9]). Если - симметричная матрица, то для неё

(6.14)

И, далее, модуль любого собственного значения матрицы не больше любой ее нормы.



 

6.3. Погрешность приближённого решения системы линейных алгебраических уравнений и обусловленность матриц. Собственно методы решения СЛАУ мы рассмотрим уже в ближайших параграфах. А здесь, следуя [9], постараемся ответить на вопрос, как на погрешность решения СЛАУ влияют ошибки в задании коэффициентов матрицы системы и компонентов вектора её правой части.

Итак, решается СЛАУ

(6.15)
Здесь и далее в учебнике - матрица СЛАУ размерности , её коэффициенты будем обозначать через , ; - вектор правой части СЛАУ. Пусть, однако, матрица и вектор известны с погрешностями, т.е. на самом деле вместо (6.15) должно быть  
, , (6.16)  
Здесь - матрица ошибок задания матрицы коэффициентов , а - вектор ошибок задания вектора правой части . Пусть известны нормы и . Требуется оценить погрешность решения. Обозначим через решение (6.15), через - решение (6.16), через =- погрешность решения СЛАУ. Подставим , и в первое равенство (6.16):  
     

Учитывая (6.16), получим

откуда

Умножая последнее равенство на слева, находим

(6.17)

Т.к. и - погрешности, которые предполагаются малыми, то можно ожидать малости и от . Следовательно, их произведением в (6.17) можно пренебречь. Получаем

(6.18)

В частности, при точном задании матрицы коэффициентов (имеем:

(6.19)

Применяя норму к обеим частям (6.18), находим оценку погрешности

. (6.20)

А из (6.19) получаем

 

(6.21)

Формула (6.21) позволяет оценить погрешность решения СЛАУ в зависимости от погрешности её правой части. Однако мы видим, что если обе части исходной системы (6.15) умножить на один и тот же сомножитель, оценка (6.21) увеличится. Другими словами, это неравенство, которое описывает абсолютную погрешность решения, зависит от масштаба коэффициентов системы и не слишком информативно. Здесь более показательным будет получение и использование зависимости между относительными погрешностями правой части СЛАУ и её решения. Для этого определим показатель, который называется мерой обусловленности системы, по формуле:

(6.22)

Как видно, это есть значение отношения относительной погрешности решения к относительной погрешности правой части. Вынося в правой части (6.22) за знак супремума то, что на него не влияет, получим:

(6.23)

Из определения следует, что это есть наименьшее из всех верхних границ указанного отношения, и это равенство может достигаться при каком-либо значении . Ну а для произвольных имеет место неравенство

(6.24)

При выше мы имели . Следовательно, по определению (6.1) согласованности норм в пространствах векторов и матриц имеем:

Тогда из (6.23) получаем:

(6.25)

Меру обусловленности системы по формуле (6.25) оценивать достаточно сложно, т.к. в это выражение входит решение исходной системы, которое заранее неизвестно. Поэтому наряду с числом используют более грубую характеристику погрешности решения СЛАУ, которая определяется только свойствами матрицы . Она называется мерой (или числом) обусловленности матрицы и задаётся формулой

(6.26)

Согласно этому определению и (6.24), получаем:

Как мы видим, число является как бы коэффициентом пропорциональности между относительной погрешностью правой части СЛАУ и относительной погрешностью решения. Таким образом, чем больше значение , тем хуже обстоит дело с погрешностью решения.

Вычислим правую часть (6.26). Применяя ещё раз определение (6.1), имеем:

Подставляя найденное значение в (6.26), получаем:

(6.27)

Эту формулу удобно применять для вычисления . Получим из неё ещё и оценку для . Во-первых, воспользуемся свойством, сформулированным в конце прошлого пункта: норма матрицы не меньше любого собственного числа этой матрицы, т.е. имеет место неравенство: .

Во-вторых, вспомним, что собственные значения матриц и являются взаимно обратными. Отсюда имеем



.

Подставляя полученные соотношения в (6.27), находим:

(6.28)

Решим ряд примеров.

Пример 6.3.Найти нормы матрицы , её число обусловленности и оценку числа обусловленности.





Дата добавления: 2014-01-03; Просмотров: 1029; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.009 сек.