КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Спектрофотометрия
При взаимодействии электромагнитного излучения с веществом всегда имеет место соотношение, выражающее закон сохранения энергии, падающей на вещество в единицу времени, т.е. падающий поток излучения Φо равен сумме поглощенного Φа, отраженного Φr и пропущенного веществом потока Φт: Φо = Φа + Φr + Φт или A+ R + T =1 R = Φа/Φо – коэффициент поглощения; R = Φr /Φо ‑ коэффициент отражения; Т = Φт/Φо – коэффициент пропускания. При прохождении через однородную среду монохроматографического луча света ослабление интенсивности светового потока описывается законом Бугера: Φλ = Φоλ exp(-xl) или Tλ = exp(-xλl), где Φоλ и Φλ – соответственно интенсивности падающего и прошедшего через анализируемый слой (l) вещества света при монохроматической длине света (λ). хλ ‑ показатель поглощения. Объединенный закон Бугера-Ламберта-Бера устанавливает следующую зависимость: Φλ = Φоλ exp(-xоλcl), где с ‑ концентрация вещества, моль/л; l ‑ толщина исследуемого слоя вещества, см. Логарифм величины обратной пропусканию носит название погашения (экстинции) или оптической плотности D: xcl. Графическая зависимость «D-с» представляет собой прямую линию, проходящую через начало координат. Методом экстраполяции определяют концентрацию анализируемого вещества на градуировочной прямой (D-С). Применяют также метод добавок. При соблюдении основного закона светопоглощения при постоянной толщине слоя отношение оптических плотностей исследуемого раствора и исследуемого раствора с добавкой будет равно отношению их концентраций: Dх/Dх + а = Сх/(Сх+Са), откуда: Сх = СаDх/(Dх + а-Dх), где Dх - оптическая плотность исследуемого раствора; Dх+а – оптическая плотность исследуемого раствора с добавкой; Сх – неизвестная концентрация определяемого вещества в исследуемом растворе; Са ‑ концентрация добавки (Сдоб.) она связана соотношением: Са = СдобVдоб/Vx +a Добавки следует брать в таких количествах, чтобы не происходило «потери точности при вычитании»; минимальная разность Dх+а-Dх должна быть не менее 0,1. При большом солевом фоне, особенно когда примеси взаимодействуют с реагентом, метод добавок может привести к получению завышенных результатов, из-за отклонений от закона Бугера-Ламберта-Бера. Приборы, используемые для измерения светопоглощения фотоэлектроколориметры, спектрофотометры, принцип работы которых заключается в преобразовании световой энергии в электрическую с помощью фотоэлементов (явление фотоэффекта). Спектрофотометры с автоматической запись спектров поглощения позволяют непосредственно получить зависимость D от λ. По спектру определяют длину волны максимального поглощения. Большое число методик фотометрического анализа посвящено также определению микроэлементов (Fe, Ni, Co, Zn, Pb, Mo и т.д.), основанных на предварительном получении окрашенных комплексных соединений с такими реагентами, как дитизон, роданид аммония, диметилглиоксим, ферроцианид калия и др. Нижний предел обнаружения составляет n·10-5 моль/л.
lмакс λ, нм Рис.10. Спектр поглощения Атомно-абсорбционный анализ Атомно-абсорбционная спектроскопия – это аналитический метод определения, основанный на поглощении электромагнитного излучения свободными (невозбужденными) атомами. Атомно-абсорбционный анализ основан на явлении абсорбции резонансного излучения, представляющего собой характеристическое излучение, соответствующее переходу электрона из основного состояния на ближайший более высокий энергетический уровень. В ходе анализа часть анализируемого образца переводят в атомный пар (аэрозоль) и измеряют поглощение излучения резонансного (характеристического) для данного определяемого элемента. Атомный пар получают распылением раствора анализируемого вещества в пламени. Атомы элемента, находящиеся в плазме в невозбужденном (свободном) состоянии, поглощают характеристическое резонансное излучение определенной для каждого элемента длины волны. В результате этого электрон атома переходит на более высокий энергетический уровень. При этом одновременно пропускаемое через плазму излучение ослабляется. Основным преимуществом метода является использование резонансного излучения, вследствие чего процесс является высокоселективным. Поглощение резонансного света атомами описывается законом убывания интенсивности проходящего через плазму монохроматического излучения (Iυ), которое зависит от толщины слоя плазмы (l) и концентрации (с) поглощающих световую энергию атомов: Iυ = I0 exp(-кυlС), где кυ – коэффециент поглощения. I0 – интенсивность падающего на плазму монохроматического излучения. При преобразовании выражения получаем: A = lg (I0/Iυ) = кυlС, где А – абсорбционность поглощающего слоя плазмы. Эта зависимость аналогична закону Бугера-Ламберта-Бера и графически выражается прямой линией. Но коэффициенты атомного поглощения характеризуются значениями порядка n·108, т.е. на три порядка больше молярных коэффициентов светопоглощения для цветных реакций в водных растворах (n·105). Наряду с высокой селективностью, метод практически свободен от эффектов спектрального наложения, характерных для явлений эмиссии, мало чувствителен к изменениям температуры пламени. Благодаря высокой чувствительности (10-5%) метод позволяет работать с малыми количествами веществ, обладает большой экспрессностью. Установки для атомно-абсорбционной спектроскопии всегда содержат разрядную трубку (т.е. лампу с полым катодом, изготовленную из определяемого элемента), горелку атомизатор или графитовую кювету, монохроматор, фотоумножитель и выходной измерительный прибор. Для диспергирования излучений в монохроматорах служат призмы или дифракционные решетки. Используют главным образом, ультрафиолетовую и видимую область спектра. Для атомизации различных элементов используют пламя: воздух-пропан, воздух-водород, воздух-ацетилен, оксид азота (I) – ацетилен и др. При выделении определяемого элемента из исследуемого образца с помощью экстракции или хроматографии можно повысить на порядок чувствительность метода (экстракционно-атомно-абсорбционный вариант). Выпускают атомно-абсорбционные спектрометры различных типов, с чувствительностью определения элементов 0,01-0,5 мкг/мл. Приборы комплектуются набором катодных ламп для различных металлов. В основе метода лежит способ построения градуировочного графика. Вначале измеряют абсорбцию эталонных растворов, строят градуировочный график в координатах “А-С” и затем, измерив величину абсорбции анализируемой пробы, находят концентрацию определяемого элемента. Атомно-абсорбционный метод – это универсальный метод определения микроколичеств металлов (и некоторых неметаллов). Описаны методы атомно-абсорбционной спектрометрии около 80 элементов в образцах проб различных отраслей промышленности. Он используется в металлургической, горной, химической, пищевой промышленности, в сельском хозяйстве, экологических исследованиях, биохимии и медицине, анализе природных, а также промышленных сточных вод на содержание следов металлов.
Дата добавления: 2017-01-14; Просмотров: 433; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |