КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
F - относительная частота их встречаемости
Обоснование задачи сравнения распределений признака ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В РАСПРЕДЕЛЕНИИ ПРИЗНАКА Распределения могут различаться по средним, дисперсиям, асимметрии, эксцессу и по сочетаниям этих параметров. Рассмотрим несколько примеров. На Рис. 4.1 представлены два распределения признака. Распределение 1 характеризуется меньшим диапазоном вариативности и меньшей дисперсией, чем распределение 2. В распределении 1 чаще встречаются значения признака, близкие к средней, а в распределении 2 чаще встречаются более высокие и более низкие, чем средняя, значения признака. Рис. 4.1. Кривые распределения признака с меньшим диапазоном вариативности признака (1) и большим диапазоном распределения признака (2); х - значения признака; Именно такое соотношение может наблюдаться в распределении фенотипических признаков у мужчин (кривая 2) и женщин (кривая 1). Фенотипическая дисперсия мужского пола должна быть больше, чем женского (Геодакян В.А., 1974; 1993). Мужчины - это авангардная часть популяции, ответственная за поиск новых форм приспособления, поэтому у них чаще встречаются редкие крайние значения различных фенотипических признаков. Эти отклонения, по мнению В.А. Геодакяна, носят "футуристический" характер, это "пробы", включающие как будущие возможные пути эволюции, так и ошибки (Геодакян В.А., 1974, с. 381). В то же время женская часть популяции ответственна за сохранение уже накопленных изменений, поэтому у них чаще встречаются средние значения фенотипических признаков. Анализ реально получаемых в исследованиях распределений может позволить нам подтвердить или опровергнуть данные теоретические предположения. На Рис. 4.2 представлены два распределения, различающиеся по знаку асимметрии: распределение 1 характеризуется положительной асимметрией (левосторонней), а распределение 2 — отрицательной (правосторонней). Рис. 4.2. Кривые распределения признака с положительной (левосторонней) асимметрией (1) и отрицательной (правосторонней) асимметрией (2); х - значения признака; (-относительная частота их встречаемости Данные кривые могут отражать распределение времени решения простой задачи (кривая 1) и трудной задачи (кривая 2). Простую задачу большинство испытуемых решают быстро, поэтому большая часть значений группируется слева. В то же время сама простота задачи может привести к тому, что некоторые испытуемые будут думать над нею очень, очень долго, дольше даже, чем над сложной. Трудную задачу большинство испытуемых решают в тенденции дольше, чем простую, но в то же время почти всегда находятся люди, которые решают ее мгновенно. Если мы докажем, что распределения статистически достоверно различаются, это может стать основой для построения классификаций задач и типологий испытуемых. Например, мы можем выявлять испытуемых со стандартным соотношением признаков: простую задачу они решают быстро, а трудную - медленно, — и испытуемых с нестандартным соотношением: простую задачу решают медленно, а трудную - быстро и т.п. Далее мы можем сравнить выявленные группы испытуемых по показателям мотивации достижения, так как известно, что лица с преобладанием стремления к успеху предпочитают задачи средней трудности, где вероятность успеха примерно 0.5, а лица с преобладанием стремления избегать неудачи предпочитают либо очень легкие, либо, наоборот, очень трудные задачи (МсСlelland D.С, Winter D.G., 1969). Таким образом, и здесь сопоставление форм распределения может дать начало научному поиску. Часто нам бывает полезно также сопоставить полученное эмпирическое распределение с теоретическим распределением. Например, для того, чтобы доказать, что оно подчиняется или, наоборот, не подчиняется нормальному закону распределения. Это лучше делать с помощью машинных программ обработки данных, особенно при больших объемах выборок. Подробные программы машинной обработки можно найти, например, в руководстве Э.В. Ивантер и А.В. Коросова (1992). В практических целях эмпирические распределения должны проверяться на "нормальность" в тех случаях, когда мы намерены использовать параметрические методы и критерии. В данном руководстве это относится лишь к методам дисперсионного анализа, поэтому способы проверки совпадения эмпирического распределения с нормальным описаны в Главе 7, посвященной однофакторному дисперсионному анализу. Традиционные для отечественной математической статистики критерии определения расхождения или согласия распределений - это метод χ2К. Пирсона и критерий X Колмогорова-Смирнова. Оба эти метода требуют тщательной группировки данных и довольно сложных вычислений. Кроме того, возможности этих критериев в полной мере проявляются на больших выборках (n > 30). Тем не менее они могут оказаться столь незаменимыми, что исследователю придется пренебречь экономией времени и усилий. Например, они незаменимы в следующих двух случаях: в задачах, требующих доказательства неслучайности предпочтений в выборе из нескольких альтернатив; в задачах, требующих обнаружения точки максимального расхождения между двумя распределениями, которая затем используется для перегруппировки данных с целью применения критерия φ* (углового преобразования Фишера). Рассмотрим вначале традиционные методы определения расхождения распределений, а затем возможности использования критерия φ* Фишера.
Дата добавления: 2017-01-14; Просмотров: 275; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |