КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ограничения биномиального критерия
Графическое представление биномиального критерия Описание критерия Биномиальный критерий m позволяет оценить, насколько эмпирическая частота интересующего нас эффекта превышает теоретическую, среднестатистическую или какую-то заданную частоту, соответствующую вероятности случайного угадывания, среднему проценту успешности в выполнении данного задания, допустимому проценту брака и т.п. Биномиальный критерий незаменим, если налицо 2 условия: а) обследована лишь одна выборка испытуемых, и нет возможности или смысла делить эту выборку на две части с целью дальнейшего применения критерия, φ*, так как для нас по каким-то причинам важно исследовать частоту встречаемости признака в выборке в целом; б) в обследованной выборке менее 30 испытуемых, что не позволяет нам применить критерий χ2. Если в нашей выборке больше 30 испытуемых, мы все же можем использовать критерий m и тем самым сэкономить время на подсчете χ2. Эмпирическая частота наблюдений, в которых проявляется интересующий нас эффект, обозначается как т. Это и есть эмпирическое [значение критерия т. Если mэмп равен или превышает mкр, то различия достоверны. Гипотезы H0: Частота встречаемости данного эффекта в обследованной выборке не превышает теоретической (заданной, ожидаемой, предполагаемой). H1: Частота встречаемости данного эффекта в обследованной выборке превышает теоретическую (заданную, ожидаемую, предполагаемую). Критерий определяет, достаточно ли эмпирическая частота встречаемости признака превышает заданную, "перевешивает" ее. Можно представить себе это как взвешивание эмпирической и теоретической частот на чашечных весах (Рис. 5.4). Весы реагируют только на такие, различия в весе, которые соответствуют по крайней мере минимальному уровню значимости р<0,05. 1. В выборке должно быть не менее 5 наблюдений. В принципе возможно применение критерия и при 2≤n<5, но лишь в отношении определенного типа задач (см. Табл. XV Приложения 1). 2. Верхний предел численности выборки зависит от ограничений, определяемых пп.3-8 и варьирует в диапазоне от 50 до 300 наблюдений, что определяется имеющимися таблицами критических значений. 3. Биномиальный критерий m позволяет проверить лишь гипотезу о том, что частота встречаемости интересующего нас эффекта в обследованной выборке превышает заданную вероятность Р. Заданная вероятность при этом должна быть: Р ≤0,50. 4. Если мы хотим проверить гипотезу о том, что частота встречаемости интересующего нас эффекта достоверно ниже заданной вероятности, то при Р=0,50 мы можем сделать это с помощью уже известного критерия знаков G, при Р>0,50 мы должны преобразовать гипотезы в противоположные, а при Р<0,50 придется использовать критерий χ2. По Табл. 5.12 легко определить, какой из путей для нас доступен. Таблица 5.12 Выбор критерия для сопоставлений эмпирической частоты с теоретической при разных вероятностях исследуемого эффекта Р и разных гипотезах.
Пояснения к Табл. 5.12 A) Если заданная вероятность Р<0,50, а f эмп> f теор (например, допустимый уровень брака - 15%, а в обследованной выборке получено значение в 25%), то биномиальный критерий применим для объема выборки 2≤n≤50. Б) Если заданная вероятность Р<0,50, а f эмп> f теор (например, допустимый уровень брака - 15%, а в обследованной выборке наблюдается 5% брака), то биномиальный критерий неприменим и следует применять критерий χ2 (см. Пример 2). B) Если заданная вероятность Р=0,50, а f эмп> f теор (например, вероятность выбора каждой из равновероятных альтернатив Р=0,50, а в обследованной выборке одна из альтернатив выбирается чаще, чем в половине случаев), то биномиальный критерий применим для объема выборки 5≤n≤300. Г) Если заданная вероятность Р=0,50, a f эмп> f теор (например, вероятность выбора каждой из равновероятных альтернатив Р=0,50, а в обследованной выборке одна из альтернатив наблюдается реже, чем в половине случаев), то вместо биномиального критерия применяется критерий знаков G, являющийся "зеркальным отражением" биномиального критерия при Р=0,50. Допустимый объем выборки: 5≤n≤300. Д) Если заданная вероятность Р>0,50, а f эмп> f теор (например, среднестатистический процент решения задачи - 80%, а в обследованной выборке он составляет 95%), то биномиальный критерий неприменим и следует применять критерий χ2 (см. Пример 3). Е) Если заданная вероятность Р>0,50, а f эмп> f теор (например, среднестатистический процент решения задачи - 80%, а в обследованной выборке он составляет 60%), то биномиальный критерий применим при условии, что в качестве "эффекта" мы будем рассматривать более редкое событие - неудачу в решении задачи, вероятность которого Q=l—Р=1—0,80=0,20 и процент встречаемости в данной выборке: 100%—75%=25%. Эти преобразования фактически сведут данную задачу к задаче, предусмотренной n. А. Допустимый объем выборки: 2≤n≤50 (см. пример 3).
Дата добавления: 2017-01-14; Просмотров: 213; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |