Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Електричні машини




Призначення, будова, монтаж та технічне обслуговування силового електроустаткування

До силового електроустаткування відносять:

Електричні машини; Трансформатори; Випрямлячі.

Електричні машини широко застосовують на електричних станціях, у промисловості, на транспорті, в авіації, в системах автоматичного регулювання та керування, у побуті. Вони перетворюють механічну енергію в електричну і, навпаки, електричну енергію в механічну. Машина, що перетворює механічну енергію в електричну, називається генератором. Перетворення електричної енергії в механічну здійснюється двигуном.

Будь-яку електричну машину можна використати як генератор і як двигун. Ця її властивість змінювати напрямок перетворюваної енергії називається оборотністю машини, її можна також використати для перетворення електричної енергії одного роду струму (частоти, кількості фаз змінного струму, напруги постійного струму) в енергію іншого роду струму. Такі електричні машини називаються перетворювачами.

Електричні машини залежно від роду струму електроустановки, в якій вони мають працювати, поділяються на машини постійного і машини змінного струму. Машини змінного струму можуть бути одно та багатофазними. Найширше застосовуються трифазні синхронні та асинхронні машини, а також колекторні машини змінного струму, які дають змогу здійснювати економічне регулювання частоти обертання в широких межах.

Найпоширенішим з електричних двигунів є трифазний асинхронний двигун, вперше сконструйований відомим російським електриком М. О. Доліво-Добровольським.

Асинхронний двигун відзначається простотою конструкції та нескладністю обслуговування. Як і будь-яка машина змінного струму, асинхронний двигун складається з двох основних частин — статора і ротора. Статором називається нерухома частина машини, ротором — її обертова частина. Властивістю асинхронної машини є її оборотність, тобто вона може бути використана в режимі генератора і в режимі двигуна. Через ряд суттєвих недоліків асинхронні генератори майже не застосовуються, в той час як асинхронні двигуни набули великого поширення.

Двигун постійного струму (ДПТ)

Машини постійного струму застосовують як електродвигунів і генераторів. Електродвигуни постійного струму мають хороші регулювальні властивості, значну перевантажувальну здатність і дозволяють отримувати жорсткі і м'які механічні характеристики.

Призначення. Такі машини широко використовують для приводу різних механізмів у чорній металургії (прокатні стани, кантувателі, роликові транспортери), на транспорті (електровози, тепловози, електропоїзди, електромобілі), у вантажопідйомних і землекопальних пристроях (крани, шахтні підйомники, екскаватори), на морських і річкових суднах, у металообробній, паперової, текстильної, поліграфічної промисловості та ін Двигуни невеликої потужності застосовують у багатьох системах автоматики.

Конструкція двигунів постійного струму складніше і їх вартість вище, ніж асинхронних двигунів. Однак у зв'язку з широким застосуванням автоматизованого електроприводу та тиристорних перетворювачів, що

дозволяють живити електродвигуни постійного струму регульованою напругою від мережі змінного струму, ці електродвигуни широко використовують у різних галузях народного господарства.

Генератори постійного струму раніше широко використовувалися для живлення електродвигунів постійного струму в стаціонарних і пересувних установках, а також як джерела електричної енергії для заряду акумуляторних батарей, харчування електролізних і гальванічних ванн, для електропостачання різних електричних споживачів на автомобілях, літаках, пасажирських вагонах, електровозах, тепловозах та ін

Недолік машин постійного струму - наявність щеточноколлекторного апарату, який вимагає ретельного догляду в експлуатації і знижує надійність роботи машини. Тому останнім часом генератори постійного струму в стаціонарних установках витісняються напівпровідниковими перетворювачами, а на транспорті - синхронними генераторами, які працюють спільно з напівпровідниковими випрямлячами.

Мал. 2.2

Електромагнітна схема двополюсної машини постійного струму (а) та еквівалентна схема її обмотки якоря (б): 1 - обмотка збудження; 2-головні полюси, 3 - якір; 4-обмотка якоря; 5 - щітки; 6 - корпус (станина)

Мал. 2.3

Будова електродвигуна постійного струму: 1 - станина, 2 - головний полюс, 3 - обмотка збудження, 4 - полюсний наконечник, 5 - додатковий полюс, 6 - обмотка додаткового полюса, 7 - провідники компенсаційної обмотки, 8 - повітряний зазор, 9 - магнітопровід якоря, 10 - провідники обмотки якоря, 11 - щітка, 12 - вал, 13 - колектор, 14 - лапа.

Принцип дії. Машина постійного струму (Мал. 2.2, а) має обмотку збудження, розташовану на явно виражених полюсах статора. З цієї обмотці проходить постійний струм Iв, створює магнітне поле збудження Фв. На роторі розташована двошарова обмотка, в якій при обертанні ротора індукується ЕРС. Таким чином, ротор машини постійного струму є якорем, а конструкція машини подібна з конструкцією зверненої синхронної машини.

При заданому напрямку обертання якоря напрям ЕРС, индуцируемой в його провідниках, залежить тільки від того, під яким полюсом знаходиться провідник. Тому у всіх провідниках, розташованих під одним полюсом, напрям ЕРС однакове і зберігається таким незалежно від частоти обертання. Іншими словами, характер кривої, що відображає напрямок ЕРС на Мал. 2.2, а, нерухомий у часі: в провідниках, розташованих вище горизонтальної осі симетрії, яка розділяє полюси (геометрична нейтраль), ЕРС завжди спрямована в один бік; в провідниках, що лежать нижче геометричній нейтралі, - в протилежну сторону.

При обертанні якоря провідники обмотки переміщуються від одного полюса до іншого; ЕРС, індукована в них, змінює знак, тобто в кожному провіднику наводять змінна ЕРС. Однак кількість провідників, що знаходяться під кожним полюсом, залишається незмінним. При цьому сумарна ЕРС, індукована в провідниках, що знаходяться під одним полюсом, також незмінна за напрямом і приблизно постійна за величиною. Ця ЕРС знімається з обмотки якоря за допомогою ковзного контакту, включеного між обмотками і зовнішньої ланцюгом.

Обмотка якоря виконується замкнутої, симетричною (Мал. 2.2, б). При відсутності зовнішнього навантаження струм по обмотці не проходить, тому що ЕРС, індуковані в різних частинах обмотки, взаємно компенсуються.

Якщо щітки, здійснюють ковзний контакт з обмоткою якоря, розташувати на геометричній нейтралі, то за відсутності зовнішнього навантаження до щіток прикладається напруга U, рівне ЕРС Е, індукованої в кожної з половин обмоток. Ця напруга практично незмінно, хоча і має деяку змінну складову, обумовлену зміною положення провідників у просторі. При великій кількості провідників пульсації напруги досить незначні.

Секція - основний елемент обмотки якоря з одного або декількох послідовно з'єднаних витків, початок і кінець яких припаяні до двох колекторним пластин, в результаті чого кінець однієї секції і початок наступного приєднані до однієї і тієї ж колекторної пластини.

Мал. 2.4

Одне і двовитковий обмотки якоря електродвигунів постійного струму: а - петлевий, б – хвильової

Мал. 2.5

З'єднання секцій обмоток якоря електродвигунів постійного струму: а - петлевий, б – хвильової

 




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 2611; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.