Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ВЛИЯНИЕ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ НА ПОКАЗАТЕЛИ КРОВИ ЛЮДЕЙ




БИОХИМИЯ, ФИЗИОЛОГИЯ И БИОТЕХНОЛОГИЯ

СЕКЦИЯ № 3

В. В. Валетов1, Е. И. Дегтярева2

1УО «Мозырский государственный педагогический университет
имени И. П. Шамякина», г. Мозырь

2УО «Гомельский государственный медицинский университет»,

г. Гомель, е-mail: elena.degtyaryova@tut.by

 

Введение. Радиочувствительность клетки прямо пропорциональна ее митотической активности и обратно пропорциональна степени ее дифференциации. Наиболее чувствительными оказываются ткани с интенсивным делением: эпителиальная, кровь. Наиболее радиорезистентными являются ткани, утратившие способность к делению: мышечная, нервная, костная и хрящевая ткани. В клетке радиация может вызвать два вида изменений: клеточных структур и генетического материала (генные мутации и хромосомные аберрации). Соответственно выделяют два вида радиационной гибели клеток: интерфазная (до вступления клеток в митоз)
и митотическая. В первом случае предполагают, что смерть наступает в результате окисления липидов клетки и образования радиотоксинов, которые вызывают иммунные реакции, склеивание клеток и их разрушение, а также торможение клеточного деления и повреждения хромосомного аппарата. Во втором случае наступает либо гибель потомков мутантных клеток вследствие их нежизнеспособности, либо невозможности расхождения хромосом в анафазу вследствие изменений структуры ДНК клеток. Какое поколение потомков таких клеток погибнет, зависит от значимости потерянного генетического материала. Выживаемость клеток зависит также от эффективности системы репарации, которая снижается, если повреждается в результате облучения.
К тому же поврежденный ген может быть недоступен для восстановления, находясь
в неактивном состоянии. Цитоплазма клеток намного менее чувствительна к радиации, чем ядро. Однако мутации могут быть не смертельными для клетки, в этом случае пораженные клетки увеличивают риск появления ракового заболевания. Наиболее частыми являются лейкозы, возникающие только спустя 2 года после облучения
и позже. Через 6–7 лет вероятность заболеть лейкозом наиболее велика, а спустя 25 лет риск заболеть лейкозом практически равен нулю. Другие виды рака могут развиваться только через 10 лет после облучения [1].

Для всех клеток организма механизм воздействия радиации одинаков, он заключается в повреждении клетки прямым или косвенным образом. Прямое воздействие заключается в изменении структуры молекул, косвенное осуществляется через механизм радиолиза воды. В результате получаются ионы водорода
и гидроксильные группы, которые мгновенно реагируют с веществами клетки.
В присутствии кислорода образуются и другие продукты радиолиза, обладающие окислительными свойствами.



Следует также принимать во внимание наличие модифицирующих факторов – сенсибилизаторов (веществ, увеличивающих эффект излучения) и радиопротекторов. Повышенное содержание кислорода в клетках во время облучения усиливает действие излучения, что объясняется усилением взаимодействия кислорода со свободными радикалами клетки и делает их недоступными для репарации. Сниженное содержание кислорода во время облучения способствует уменьшению его пагубного воздействия на организм. Известно много радиопротекторов, но они проявляют свое действие только
в момент облучения и в ближайшие сроки после него [2].

Радиочувствительность организма зависит от многих факторов. Чем больше степень организации животного, чем более дифференцированы его ткани, тем больше оно чувствительно к радиации. Радиация вызывает различного рода неблагоприятные изменения в организме человека. К ближайшим последствиям относят острую лучевую болезнь (ОЛБ) и хроническую лучевую болезнь (ХЛБ), к отдаленным – злокачественные опухоли, снижение продолжительности жизни, атеросклероз и другие явления, являющиеся признаками старения организма. ОЛБ возникает при дозах более 2 Гр, полученных одномоментно или в течение нескольких дней, ХЛБ – при облучении малыми дозами 0,1–0,5 Гр/сут после накопления суммарной дозы 0,7–1 Гр, т. е. через 140–1000 дней [3].

Последствия облучения зависят не только от дозы, но и от вида облучения – общее оно или местное, внешнее или от инкорпорированных радионуклидов;
от временного фактора (однократное, повторное, пролонгированное, хроническое);
от равномерности облучения, величины облучаемого объема и локализации облученного участка, от соотношения радиопротекторов и сенсибилизаторов
в организме.

Целью работы явилось изучение влияния радиоактивного излучения на показатели периферической крови людей.

Материалы и методика исследований.В ходе проведенной работы обследовались 180 мужчин в возрасте от 20 до 60 лет, подвергшихся радиоактивному облучению в дозах до 80 бэр.

Определяли количество эритроцитов, концентрацию гемоглобина, СОЭ, количество тромбоцитов, лейкоцитов и лейкоцитарную формулу.

Количество эритроцитов, лейкоцитов, тромбоцитов, концентрация гемоглобина определялось на гематологическом анализаторе АВХ MICROS 60-СТ/ОТ, СОЭ – по Панченкову, параметры лейкоцитарной формулы и количество тромбоцитов определялись в мазке, окрашиваемом по Романовскому-Гимзе в течении 40 мин.

В массиве обследованных было выделено 3 возрастные группы: 1-ю составляли мужчины в возрасте от 20 до 40 лет , 2-я – 40–50 лет, 3-я – 50–60 лет.

Результаты исследований и их обсуждение.Организм человека до 50 лет характеризуется относительно постоянным составом внутренней среды, затем начинаются нарушения гомеостаза. С возрастом снижается количество эритроцитов, устанавливаясь к 80–90 годам на нижней границе нормы, падает число ретикулоцитов, нарастает диаметр эритроцитов и амплитуда анизоцитоза. Эти изменения объясняются уменьшением массы кроветворящего красного костного мозга, составляющей
у 80-летнего 1/20 часть красного костного мозга 20-летнего. Снижается скорость разрушения крови, связанная с возрастной инволюцией селезенки. Концентрация гемоглобина у лиц пожилого и старческого возраста находится в пределах нижней границы нормы, выведенной для зрелого возраста. С возрастом падает концентрация альбуминов и повышается концентрация глобулинов, что связано с изменением белок-синтезирующей функции печени и большей проницаемостью стенок капилляров для альбуминов, чем для глобулинов. СОЭ имеет тенденцию к повышению между 40–49 годами, когда ее величина лишь в 79% случаев ниже 10 мм/ч. Затем она постепенно увеличивается, после 60 лет величина СОЭ ниже 10 мм/ч выявляется у 12,5% людей. Снижение СОЭ можно объяснить снижением количества и потерей электрического потенциала эритроцитов, повышением концентрации глобулинов. Количество лейкоцитов в возрасте 90 лет составляет около 4 тыс./мкл. В глубокой старости количество лимфоцитов понижается на 24%. Количество тромбоцитов к старости также уменьшается [4].

Анализ изучаемых показателей крови с учетом возраста позволил установить следующие закономерности.

Статистически значимое снижение числа эритроцитов до 4,60±0,038 млн 1 мл установлено лишь для 1-й возрастной группы. В двух других возрастных группах изменения этого показателя были разнонаправленными и статистически незначимыми.

Изменения содержания гемоглобина повторяют в целом динамику количества эритроцитов, что обусловлено тесной связью этих показателей. В 1-й возрастной группе после облучения концентрация гемоглобина снижается до 141,6±1,26 г/л при возрастной норме 147,4±1,05. В двух других возрастных группах достоверного уменьшения концентрации гемоглобина не отмечено.

Можно предположить, что уменьшение числа эритроцитов и содержания гемоглобина в первой возрастной группе связано с низкой устойчивостью молодого организма к повреждающим факторам окружающей среды, в том числе и к радиации.

Скорость оседания эритроцитов повышается во всех возрастных группах, что обусловлено, вероятно, уменьшением количества эритроцитов и изменениями физико-химических свойств плазмы крови. Наибольший прирост наблюдается в старшей возрастной группе, достигая 6,8±1,24 мм/ч. С течением времени после облучения СОЭ несколько снижается, причем, заметна обратная зависимость эффективности процесса восстановления от возраста. Можно предположить, что восстановительные процессы в старших возрастных группах отчасти компенсируют встречное повышение СОЭ, обусловленное чисто возрастным фактором.

Относительно числа лейкоцитов и параметров лейкоцитарной формулы не выявлено значимых возрастных различий в силу значительной вариабельности этих показателей. Наблюдаемые возрастные различия указанных параметров не проявляют видимой закономерности.

С целью выяснения зависимости показателей крови от дозы испытуемые были разбиты на три группы в соответствии с полученной дозой облучения: менее 2 бэр,
2–10 бэр и более 10 бэр. Ни по одному из изучаемых показателей не выявлено зависимости от дозы облучения.

Заключение.Нами были установлены следующие изменения показателей периферической крови: снижение количества эритроцитов и тромбоцитов, уменьшение содержания гемоглобина, повышение СОЭ.

У людей, подвергшихся воздействию малых доз ионизирующего излучения,
не установлено зависимости изменений показателей периферической крови
от величины дозы.

Литература

1. Валетов, В. В. Физиологические аспекты кормления сельскохозяйственных животных: монография / Валетов В. В., Дегтярева Е. И. – Мозырь: УО МГПУ имени И.П. Шамякина. – 2013. – 88 с.

2. Сарасеко, Е. Г. Влияние особенностей торфяных почв республики Беларусь на качественный состав грубых кормов / Е. Г. Сарасеко, Е. И. Дегтярева // Современные экологические проблемы устойчивого развития Полесского региона и сопредельных территорий: наука, образование, культура: материалы V Междунар. науч.-практ. конф. Мозырь, 25–26 октября 2012. / УО МГПУ им. И.П. Шамякина; редкол.: О. П.Позывайло (отв. ред.) [и др.]. – Мозырь, 2012. - С. 272–275.

3. Гольдберг, Е. Д. Гематологические показатели у работников рентгенологических и радиологических отделений / Е. Д. Гольдберг, О. С. Голосов, К. Г. Потехин / Мед. вестник. – 1981. - № 5. – С. 49–54.

4. Акоев, И. Г. Отдаленные последствия облучения в системе крови / И. Г. Акоев // Мед. радиол. – 1998. – № 1. – С. 21–27.

ПОЛУЧЕНИЕ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ ИЗ КУТИКУЛЫ МАДАГАСКАРСКОГО ШИПЯЩЕГО ТАРАКАНА
(GROMPHADORINA GRANDIDIERI)





Дата добавления: 2017-01-14; Просмотров: 48; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.162.152.232
Генерация страницы за: 0.009 сек.