КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Контрольные мероприятия и сроки их проведения
Упражнения Лекции Модуль 2 Модуль 1 МАТЕМАТИЧЕСКИЙ АНАЛИЗ ЗАЧЕТ Условием получения отметки о сдаче 1, 2 и 3 модуля семестра является сдача текущего материала на аудиторных занятиях путем устных ответов, выполнение поурочных домашних заданий, участие в обсуждении устных тем уроков, положительным написанием контрольной работы с получением баллов по балльно-рейтинговой системе.
Литература Основная литература (ОЛ) 1. Токарева С.А., Фомина М.А. Методические указания по чтению и переводу для студентов I курса на французском языке. - М.: Изд-во МГТУ им.Н.Э.Баумана, 2007 Дисциплина состоит из 2-х учебных модулей и экзамена. Таблица 5.1
Таблица 5.2
Модуль 1: Элементарные функции и пределы Лекция 1. Множество R действительных чисел, промежутки. Окрестности конечной точки и бесконечности. Ограниченные и неограниченные множества в R. Точные верхняя и нижняя грани множества. Функция, ее график. Композиция функций. Классы числовых функций (монотонные, ограниченные, четные, периодичные). Обратимые функции. Класс элементарных функций. ОЛ-1 гл.1, 2, 3. Лекция 2. Числовая последовательность и ее предел. Основные свойства пределов последовательностей (предел постоянной, единственность предела, ограниченность сходящейся последовательности). Арифметические операции над сходящимися последовательностями. Критерий Коши сходимости последовательности. Сходимость ограниченной монотонной последовательности. Число . Гиперболические функции. ОЛ-1 гл. 6. Лекция 3. Два понятия предела функции в точке (предел по Коши и предел по Гейне). Теорема об эквивалентности этих понятий. Геометрическая иллюстрация предела. Предел функции в бесконечности. Бесконечные пределы. Единственность предела функции. Локальная ограниченность функции, имеющей конечный предел. Теорема о сохранении функцией знака своего предела. ОЛ-1, пп. 7.1, 7.3, 7.4; ОЛ-3, гл. II, §§ 2, 3, 5. Лекция 4. Предельный переход в неравенстве. Теорема о пределе промежуточной функции. Односторонние пределы. Бесконечно малые функции. Связь функции, ее предела и бесконечно малой. Свойства бесконечно малых функций. Арифметические операции с функциями, имеющими пределы. ОЛ-1, пп. 7.4–7.6; ОЛ-3, гл. II, §§ 4, 5. Лекция 5. Теорема о замене переменной в пределе (о пределе сложной функции). Бесконечно большие функции, их связь с бесконечно малыми. Первый и второй замечательные пределы. Сравнение функций при данном стремлении аргумента. Теоремы об эквивалентных функциях. ОЛ-1 пп. 7.6–7.7; гл.10; ОЛ-3, гл. II, §§ 6, 7, 11. Лекция 6. Порядок малости (или роста) функции при данном стремлении, выделение ее главной части. Применение к вычислению пределов. Различные подходы к понятию непрерывности, их эквивалентность. Свойства функций, непрерывных в точке. ОЛ-1, пп. 9.1–9.3; ОЛ-3, гл. II, § 9. Лекции 7-8. Односторонняя непрерывность функции в точке. Непрерывность функции на промежутке (в частности, на отрезке). Непрерывность основных элементарных функций (док-во для многочлена и синуса). Точки разрыва функций, их классификация. Свойства функций, непрерывных на отрезке. Теорема о непрерывности обратной функции (без док-ва). Асимптоты графика функции. ОЛ-1, пп. 9.3–9.4; ОЛ-3, гл. II, §§ 9, 10, гл. V, §10. Занятия 1–4. Основные элементарные функции их свойства и графики. Кривые в полярных координатах. Ауд.: ДЛ-4 №№ 63, 67, 71, 72, 77, 91, 93, 101, 102, 110, 116, 118, 128 (а), 132, 135, 136, 139, 140, 146, 153; раздаточный материал. Дома: ДЛ-4 №№ 51 (2), 60, 65, 69, 73, 92, 95, 112, 114, 122, 127 (а), 136, 138, 141, 145, 154. Занятие 5. Пределы числовых последовательностей. Ауд.: ОЛ-4 №№ 1. 230 (б), 1.232, 1.233, 1.235, 1.236, 1.238, 1.240, 1.282, 1.284, 1.299, 1.301, или ДЛ-4 №№ 170(а, в) 171, 173, 179. Дома: ОЛ-4 №№ 1. 74, 1.77, 1.230 (г), 1.234, 1.239, 1.241, 1.243, 1.283, 1.286, 1.294, 1.299, 1.300, 1.302, 1.237 или ДЛ–4 № 170(б, в, г), 172, 174, 176, 180. Занятие 6. Вычисление пределов алгебраических функций. Односторонние пределы. Ауд.: ОЛ-4 №№ 1.272, 1.274, 1.277, 1.285, 1.289, 1.292, 1.298, 338, 340, 342, 343. Дома: ОЛ-4 №№ 1.273, 1.275, 1.276, 1.281, 1.288, 1.290, 1.291, 1.297, 339, 341, 344, 345; или Ауд.: ДЛ–4 №№ 181, 184, 186, 188, 211, 213, 215, 183, 191, 197, 203, 205, 211, 213, 215, 264, Дома: ДЛ–4 №№ 182, 185, 187, 190, 194, 198, 204, 206, 210, 212, 214, 265, 267, 269, 270. Занятие 7. Первый и второй замечательные пределы. Ауд.: ОЛ-4 №№ 1.304, 1.306, 1.310, 1.312, 1.314, 320, 322, 324, 326; Дома: ОЛ-4 №№ 1.303, 1.305, 1.307, 1.311, 1.313, 321, 323, 325, 327; или Ауд.: ДЛ–4 №№ 216, 218, 219, 220, 221, 222, 234, 241, 243, 245, 259, 263; Дома: №№ ДЛ–4 №№ 217, 223, 227, 235, 239, 242, 244, 246, 248, 252, 260. Занятие 8. Сравнение функций при данном стремлении. Ауд.: ОЛ – 4 №№ 1.349, 1.351, 1.353, 1.355, 1.357, 1.359 (а, в), 1.360, 1.362; Дома: ОЛ-4 №№ 1.350, 1.352, 1.354, 1.356, 1.358, 1.359 (б), 1.363, 1.367, 1.361, 363; или Ауд.: ДЛ–4 №№ 292(а), 293, (а, в, д), 300 (а, г), 303 (а, в); Дома: ДЛ–4 №№ 292(б), 293, (б, г), 300(б, г), 303 (б, д). Занятие 9. Вычисление пределов функций и приближенных значений функций с помощью эквивалентных бесконечно малых и бесконечно больших. Ауд.: ОЛ-4 №№ 1.308, 1.314, 1.330, 1.332, 1.318, 1.326, 1.328, 1.330, 1.332, 1.335, 1.337, 1.338, 1.341, 1.342, 1.345, 1.366, 1.368, 1.370, 1.372, 1.374, 1.376; Дома: ОЛ-4 №№ 312, 313, 315, 316, 329, 331, 333, 1.367, 1.361, 1.369, 1.371, 1.373, 1.375, 1.377. Или Ауд.: ДЛ-4 №№ 224, 226, 228, 230, 232, 236, 240, 251, 253, 255, 257, 296, 297; Дома: ДЛ-4 №№ 229, 231, 233, 235, 237, 239, 248, 254, 262, 298, 299. Занятие 10. Непрерывность функций. Точки разрыва и их классификация. Ауд.: ОЛ-4 №№ 1.381, 1.384, 1.386, 1.388, 1.390, 1.392, 1.394, 1.395, 1.397, 1.399, 1.401, 1.402. Дома: ОЛ-4 №№ 1.382, 385, 1.387, 1.391, 1.393, 1.396, 1.398, 1.400, 1.403, 1.389 или Ауд.: ДЛ-4 №№ 309, 310 (а) 313, 315, 316 (а, в, д), 317, 319, 321, 323, 326, 329, 330. Дома: ДЛ-4 №№ 307, 310 (б), 314, 316 (б, г, е), 318, 322, 324, 325, 327, 328. Занятие 11. Контроль по модулю 1 (РК №1). 1. ДЗ №1 «Элементарные функции и их графики» Срок выдачи 1 неделя, срок сдачи - 4 неделя 2. ДЗ №2 «Пределы и непрерывность» Срок выдачи 1 неделя, срок сдачи - 9 неделя Контроль по модулю №1 (РК №1) «Пределы и непрерывность». Срок проведения – 9 неделя Модуль 2: Дифференциальное исчисление функций одного переменного
Дата добавления: 2017-02-01; Просмотров: 57; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |