КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Матрицы и системы линейных алгебраических уравнений
Кривые и поверхности 2-го порядка Лекции Модуль 2 Модуль 1 Контрольные мероприятия и сроки их проведения Прямые и плоскости Векторная алгебра Упражнения Занятия 1-2. Определители и их свойства. Решение систем линейных уравнений по формулам Крамера. Ауд.: изложение теории; ОЛ-2 №№ 3.2, 3.8, 3.13, 3.19, 3.22, 3.25, 3.27, 3.51, 3.53, 3.187, 3.189, 3.191, 3.198 или ДЛ-2 №№ 1204(8), 1205(3), 1206(1), 1211, 1213, 1217, 1219, 1221, 1223, 1224, 1234(2), 1252, 1237, 1239, 1240, 1242, 1247. Дома: ОЛ-2 №№ 3.3 9, 3.12, 3.20, 3.21, 3.28, 3.50, 3.52, 3.188, 3.190, 3.192, 3.199 или ДЛ-2 №№ 1204(7), 1205(4), 1206(2), 1212, 1214, 1218, 1220, 1225, 1235(2), 1253, 1238, 1241, 1243, 1251. Занятие 3. Линейные операции с векторами. Разложение вектора по базису. Ауд.: ОЛ-2 №№ 2.7 2.8, 2.19, 2.20, 2.38, 2.39, 2.44, 2.46, 2.51, 2.56, 2.57 или ДЛ-2 №№ 769(1,3), 773(1,3,5), 775(2,4,6), 777, 779, 783, 788, 789, 794, 771. Дома: ОЛ-2 №№ 2.10, 2.22, 2.36, 2.37, 2.45, 2.46, 2.52, 2.58 или ДЛ-2 №№ 769(2,4), 773(2,4), 775(1,3,5), 776, 778, 785, 787, 793. Занятие 4. Скалярное произведение векторов и его приложения. Ауд.: ОЛ-2 №№ 2.40, 2.65, 2.70, 2.78(б, г, ж, з, и), 2.80, 2.82, 2.84, 2.89 или ДЛ-2 №№ 795(1,3,5,7), 808, 814(1,4), 815, 818, 821, 826, 833, 780, 825. Дома: ОЛ-2 №№ 2.66, 2.67, 2.71, 2.72, 2.78(а, в, д), 2.81, 2.83, 2.88 или ДЛ-2 №№ 795(2,4,6), 812(1,4,5), 820, 824, 830, 835, 781, 813, 817, 819. Занятие 5. Векторное произведение векторов и его приложения. Ауд.: ОЛ-2 №№ 2.98(а, б), 2.99, 2.100(а, б), 2.108, 2.109, 2.115, 2.118, 2.120 или ДЛ-2 №№ 839, 843, 844, 850, 854, 855, 857, 840, 861, 862. Дома: ОЛ-2 №№ 2.98(в), 2.100(в, г), 2.105, 2.106(в), 2.107, 2.111, 2.116, 2.119 или ДЛ-2 №№ 841, 842, 848, 851, 858, 859, 853, 860. Занятие 6. Смешанное произведение векторов и его приложения. Ауд.: ОЛ-2 №№ 2.125, 2.127(а), 2.129, 2.130, 2.132, 2.134, 2.135(а), 2.136(а), 2.137, 2.138(а), 2.140(а, в) или ДЛ-2 №№ 865(1,3,5), 867, 868, 869, 871, 874(1,2), 875, 877, 878. Дома: ОЛ-2 №№ 2.124, 2.126, 2.127(б), 2.133, 2.135(б), 2.136(б), 2.138(б), 2.139, 2.140(б, г) или ДЛ-2 №№ 865(2,4,6), 866, 870, 873, 874(3), 876. Занятие 7. Плоскость в пространстве. Ауд.: ОЛ-2 №№ 2.180(а), 2.181(а), 2.182(а), 2.183(а), 2.184(б), 2.185, 2.190, 2.196, 2.191 или ДЛ-2 №№ 916, 917, 921, 930, 932, 926(1), 927(1), 940(1), 941(3), 942(2), 947, 949, 964(1). Дома: ОЛ-2 №№ 2.180(б), 2.181(б), 2.192(б), 2.193(б), 2.194(а), 2.187, 2.188, 2.189, 2.195 или ДЛ-2 №№ 914, 991, 929, 931, 934, 926(2), 927(2), 940(2), 941(1), 942(3), 950, 964(2). Занятия 8. Прямая в пространстве. Взаимное расположение прямых и плоскостей в пространстве. Ауд.: ОЛ-2 №№ 2.197(а), 2.198, 2.200(а), 2.204, 2.205(а), 2.208, 2.214 или ДЛ-2 №№ 1010(1), 1007, 1018, 1020(1), 1023, 1042, 1050, 1063(1), 991, 1052. Дома: ОЛ-2 №№ 2.197(б), 2.199, 2.201, 2.203(б), 2.205(б), 2.206, 2.210, 2.215 или ДЛ-2 №№ 1008(1), 1009(1), 1024, 1043, 1054, 1063(2), 993 Занятия 9. Контроль по модулю №1 (РК №1) 1. ДЗ №1 часть 1 «Векторная алгебра» Срок выдачи 2 неделя, срок сдачи - 7 неделя 2. ДЗ №1 часть 2 «Прямые и плоскости» Срок выдачи 1 неделя, срок сдачи - 9 неделя 3. Контроль по модулю №1 (РК №1) «Векторная алгебра, прямые и плоскости». Срок проведения – 10 неделя
Лекции 7–8. Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений. Исследование формы кривых второго порядка. Параметры кривых второго порядка (полуоси, фокусное расстояние, эксцентриситет). Оптическое свойство (без док-ва). Смещенные кривые второго порядка. Исследование неполного уравнения кривой второго порядка. ОЛ-1, гл. 11; ОЛ-3, гл. 6, §1–3. Лекция 9. Поверхности второго порядка. Цилиндрические поверхности. Поверхности вращения. Эллипсоид. Конус. Гиперболоиды. Параболоиды. Их канонические уравнения. Исследование поверхностей второго порядка методом сечений. ОЛ-1, гл. 12; ОЛ-3, гл. 7, §3. Лекция 10. Матрицы. Виды матриц. Равенство матриц. Линейные операции с матрицами и их свойства. Транспонирование матриц. Операция умножения и ее свойства. Элементарные преобразования матриц, приведение матрицы к ступенчатому виду элементарными преобразованиями строк. ОЛ-1, пп. 6.1–6.4; ОЛ-4, гл. 1, §1. Лекции 11–12. Блочные матрицы и операции с ними. *Прямая сумма матриц и ее свойства (без док-ва). Обратная матрица. Теорема о ее единственности. Критерий существования обратной матрицы. Присоединенная матрица. Вычисление обратной матрицы с помощью присоединенной матрицы и с помощью элементарных преобразований. Матрица, обратная произведению двух обратимых матриц. Решение матричных уравнений вида AX=B и XA=B с невырожденной матрицей А. Формулы Крамера. Метод Гаусса. ОЛ-1, пп. 6.5, 6,6, 8.1–8,3; ОЛ-4, гл. 1 §1 п. 3, §2, п. 7, гл. 3 §2, п. 1. Лекция 13. Минор матрицы. Ранг матрицы. Базисный минор. Линейная зависимость и линейная независимость строк и столбцов матрицы. Критерий линейной зависимости. Теорема о базисном миноре и ее следствия. Инвариантность ранга матрицы относительно ее элементарных преобразований (без док-ва). Способы вычисления ранга матрицы. ОЛ-1, пп. 6.7, 6.8, 8.4–8.6; ОЛ-4, гл. 1 §3. Лекция 14. Системы линейных алгебраических уравнений (СЛАУ). Координатная, матричная и векторная формы записи. Критерий Кронекера — Капелли совместности СЛАУ. Однородные СЛАУ. Критерий существования ненулевого решения однородной СЛАУ. ОЛ-1, пп. 9.1–9.5; ОЛ-4, гл. 3, §1–2. Лекция 15. Свойства решений однородной СЛАУ. Фундаментальная система решений однородной СЛАУ, теорема о ее существовании. Нормальная фундаментальная система решений. Теорема о структуре общего решения однородной СЛАУ. Теорема о структуре общего решения неоднородной СЛАУ. ОЛ-1, пп. 9.5–9.7; ОЛ-4, гл. 3, §1–2. Лекция 16. Комплексные числа: алгебраическая и тригонометрическая форма комплексного числа. Действия над комплексными числами. Формула Муавра, возведение комплексного числа в степень и извлечение корня из комплексного числа. Экспоненциальная форма записи и формулы Эйлера. Основная теорема алгебры (без док-ва). Разложение многочленов с действительными коэффициентами на неприводимые множители. Разложение рациональной функции в сумму простейших дробей. ОЛ-5, гл. 7, §1–2. Лекция 17. Резерв. .
Дата добавления: 2017-02-01; Просмотров: 73; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |