КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры решения изгиба таких плит обратным методом
Пример 1. W=ax2+by2 – дает чистый изгиб в двух направлениях моментами, приложенными на контуре. Крутящие моменты Н=0. Форма изогнутой поверхности – двояковыпуклая оболочка
Уравнение С. Жермен удовлетворяется при любых «а» и «b»
Пример 2.
Уравнение w=kxy удовлетворяет уравнению С. Жермен при любом «К».
Получаем условия на контуре: крутящие моменты Н=const, изгиб Мх=Му=0
Формула изогнутой поверхности: гиперболический параболоид (гипар.)
Для пластинки круглого очертания в плане удобно использовать полярную систему координат (r, θ). Выбор (изменение) системы координат, конечно, не меняет принципиальные зависимости, т.е. уравнение С. Жермен и т.д.
НДС пологих тонких оболочек содержит изгибное (как в тонкой плите) – Мх, Му, Н, Qx, Qy и мембранное (как в плоской задаче) - Nх, Nу, S состояния. Их расчёт сводится к РЕШЕНИЮ системы из двух уравнений с искомыми W(xy) и φ(xy). Аналогом в стержневой системе может служить пологая арка, в которой возникают изгибающие моменты М и продольные силы N. Эффективной конструкцией является арка с рациональной осью, в которой М=0. Аналогично можно выбрать рациональную форму пологой оболочки, в которой изгибное состояние будет незначительным. Эти оболочки называют безмоментными. Их решение сводится к одному уравнению. В безмоментных сферических и цилиндрических оболочках в основном есть Nх, Nу, в гипарах – Sxy. Задача инженера – выбрать рациональную форму оболочки и тем самым управлять НДС.
Перекрестные пространственные системы из ферм
перекрестные фермы
Рис. Пространственные перекрестные системы из ферм (структуры) а) плоскостная (плитная) б) криволинейная (сводчатая, арочная, оболочечная)
Контрольные вопросы: 1. В чем принципиальное отличие работы плоских систем от пространственных? 2. В чем состоят принципиальные… конструктивной безопасности пространственных систем 3. Как реагируют на неравномерную осадку опор пространственные (статически неопределимые) системы и статически определимые, например, балочные системы?
Балочные клетки. Расчетные схемы. Сравнение с изгибом тонкой плиты
Рис. 1. Балочная клетка из перекрестных балок 1. Балки обоих направлений примерно равны по жесткости. При нагружении одной балки в работу включаются все балки (пространственное перераспределение сил) (рис. 1) 2. Балки одного направления(второстепенные) значительно меньше по жесткости, чем балки другого направления (главные) (рис. 2)
Рис. 2. Второстепенные балки шарнирно оперты на главные. Они собираются и передают на главные балки нагрузку в виде сосредоточенных сил, а главные балки передают нагрузку на опоры. Изгиб балок не сопровождается скручиванием. Весь расчет балочной клетки расчленяется на две части: изгиб второстепенных балок с определением реакций, затем изгиб главных балок.
Рис. 3. Поперечный изгиб тонкой плиты (рис. 3) (толщина <1/5 длины пролета) можно мысленно представить как балочной клетки (взаимно переключающиеся балки одинаковой жесткости). ,
Дата добавления: 2017-02-01; Просмотров: 70; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |