Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частинка в одновимірній прямокутній потенціальній ямі. Проходження частинки через потенціальний бар’єр




7.4.1. Усякий зв’язаний стан частинки (вільний електрон в металі, нуклон в ядрі тощо), тобто стан з від’ємною потенціальною енергією, можна описати, ввівши поняття потенціальної ями. Розглянемо найпростіший випадок, коли частинка масою m перебуває в одновимірній прямокутній нескінченно глибокій потенціальній ямі шириною . Оскільки початок відліку потенціальної енергії можна вибирати довільно, то задачу про “яму” замінимо задачею про “ящик”, на дні якого потенціальна енергія дорівнює нулю, а стінки якого нескінченно високі (рис. 7.6). Оператор Гамільтона (7.26) для цього випадку має вигляд

,

де

Всередині ящика рівняння Шрьодінгера (7.30) запишеться як

або

. (7.32)

Введемо позначення

, (7.33)

де k має зміст хвильового числа, якщо врахувати (7.31). Тоді (7.32) набуде форми, подібної (формально) до диференціального рівняння власних гармонічних коливань,

.

Розв’язок цього рівняння шукаємо у вигляді гармонічної функції координати х:

. (7.34)

Оскільки хвильова функція повинна бути неперервною, в тому числі і на стінках ями, а вийти за межі ями частинка не може, то . Перша гранична умова дає , і тому

. (7.35)

Друга гранична умова дає

, (7.36)

де n = 1, 2, 3, … – квантове число стану частинки.

Врахувавши, що , отримаємо з (7.36) співвідношення , тобто в межах ширини ями повинно вкладатись ціле число півхвиль де Бройля.

Формальну амплітуду А в (7.35) знайдено з умови нормування хвильової функції до одиниці:

.

Звідси , і остаточно хвильова функція частинки в довільному квантовому стані n, з врахуванням (7.36), набуває вигляду

. (7.37)

Об’єднуючи (7.33) і (7.36), отримаємо вираз для енергії частинки в різних квантових станах

. (7.38)

Отже, енергія частинки в потенціальній ямі приймає не довільні, а дискретні значення Е1, Е2, Е3, …, зображені на рис. 7.6 відповідними енергетичними рівнями. Густина імовірності (рис. 7.6) залежить від координати частинки, при цьому по різному в кожному квантовому стані. Наприклад, для центру ями вона максимальна в стані n = 1 і дорівнює нулю в стані n = 2.

Відстань між сусідніми енергетичними рівнями

. (7.39)

Розглядаючи електрон в атомі як такий, що перебуває в потенціальній ямі шириною , отримаємо , що співмірно з енергією електрона. В цей же час в макросвіті, коли m i l – дуже великі, відстань між енергетичними рівнями стає зникаюче малою, і квантуванням енергії можна знехтувати.

Задача про частинку в потенціальній ямі скінченної глибини розв’язується значно складніше, але висновок про квантування енергії і в цьому випадку залишається в силі.

7.4.2. Спорідненою до описаної є задача про проходження частинки через потенціальний бар’єр. Нехай мікрочастинка з масою m і енергією Е налітає на одновимірний прямокутний потенціальний бар’єр шириною l і висотою U 0 (рис. 7.7). Якщо частинка класична, то вона пролітає над бар’єром, коли Е > U 0, і відбивається від нього, коли Е < U 0. Проникнути під бар’єр класична частинка не може, бо тоді її кінетична енергія була б меншою від нуля. Розв’язок рівняння Шрьодінгера для квантомеханічної мікрочастинки дає, що хвильові функції в усіх трьох областях відмінні від нуля, тобто мікрочастинка проникає під бар’єр і за бар’єр. Це явище називається тунелюванням. Від’ємні значення кінетичної енергії мікрочастинки в момент проходження бар’єру не можуть турбувати, бо в квантовій механіці кінетична енергія , як і потенціальна енергія, не є точно визначеними. Прозорість бар’єру, тобто імовірність тунелювання частинки, знаходиться як відношення густин імовірності в областях ІІІ та І. Розрахунок дає

. (7.40)

Звідси видно, що бар’єр тим прозоріший, чим менші його ширина і висота. Для класичної частинки (m ® ¥) і макробар’єру (l ® ¥) прозорість бар’єру зникаюче мала.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 4313; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.