Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Квантовий лінійний гармонічний осцилятор




7.5.1. Лінійний гармонічний осцилятор – це матеріальна точка, яка здійснює одновимірний (вздовж осі х) рух під дією квазіпружної сили . Потенціальна енергія осцилятора (рис. 7.8)

, (7.41)

де m – маса осцилятора, – його власна циклічна частота, х – зміщення від положення рівноваги. Отже, мова піде про мікрочастинку, яка перебуває в потенціальній ямі з параболічними стінками. Підставляючи (7.41) в рівняння Шрьодінгера (7.30), отримаємо

. (7.42)

Власні хвильові функції, тобто розв’язки цього рівняння, які задовольняють стандартні вимоги (§7.3), мають вигляд

, (7.43)

де , – поліноми Чебишева-Ерміта u -го порядку, – коливаль­не квантове число.

Для класичного осцилятора зміщення х обмежене амплітудою коливань ; для квантового осцилятора таке обмеження знімається за рахунок можливості тунелювати через стінки потенціальної ями. А це означає, що існує ненульова імовірність знайти мікрочастинку поза ямою.

Власні значення оператора Гамільтона для квантового осцилятора

. (7.44)

Тут враховано, що . Отже, енергія квантового осцилятора приймає дискретні значення , тобто квантується (рис.7.8). Найменша енергія квантового осцилятора, так звана нульова енергія, на відміну від класичного осцилятора, не дорівнює нулю. Наявність нульових коливань підтверджується експериментально в дослідах по розсіянню світла в кристалах при дуже низьких температурах, коли з точки зору класичної фізики коливальний рух кристалічної гратки повинен би припинитися.

Перебуваючи в стаціонарному стані, квантовий осцилятор не поглинає і не випромінює енергії. Випромінювання (поглинання) світла відбувається при переході осцилятора між стаціонарними станами, при цьому квантова механіка дозволяє лише переходи між сусідніми енергетичними рівнями, тобто (правило відбору). Енергія випромінюваного (поглинутого) кванту , що підтверджує квантовий постулат Планка.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 775; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.