КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Воднеподібні атоми в квантовій механіці. Квантові числа
7.6.1. З врахуванням виразу (7.3) для потенціальної енергії електрона в кулонівському полі ядра воднеподібного атома, стаціонарне рівняння Шрьодінгера набуде вигляду . (7.45) Оскільки кулонівське поле володіє центральною симетрією, то зручно перейти до сферичних координат (рис. 7.9), де положення довільної точки А описується трьома координатами . В цьому випадку рівняння Шредінгера набуває вигляду, складнішого від (7.45), але з’являється можливість представити хвильову функцію як добуток радіальної функції R (r) і кутової , тобто провести розділення змінних: . (7.46) Стандартні вимоги як до хвильової функції в цілому, так і до окремих складових забезпечуються лише при певних, дискретних значеннях не тільки енергії електрона, але і квадрату моменту імпульсу його орбітального руху , а також проекції цього моменту на вибраний напрямок (вісь z). Квантування вказаних характеристик визначається трьома квантовими числами: головним n, орбітальним (азимутальним) та магнітним наступним чином: , (7.47) де n =1,2,3,…, тобто співпадає з (7.8) для борівського воднеподібного атома; , (7.48) де = 0,1,2,…, (n- 1); , (7.49) де . Магнітне квантове число вказує на просторове квантування моменту імпульсу електрона: вектор моменту імпульсу електрона може мати лише такі орієнтації в просторі, що його проекції на вибрану вісь z (яка задається, як правило, напрямком магнітного поля) кратні (рис. 7.10). Оскільки енергія електрона визначається лише головним квантовим числом n, а хвильова функція – усіма квантовими числами, то декільком станам з різними та відповідає одне значення енергії. Така ситуація називається квантовомеханічним виродженням. Наприклад, енергія реалізується в чотирьох станах з хвильовими функціями . В загальному, кратність виродження дорівнює . Для ілюстрації приведемо вирази для радіальних і кутових функцій в декількох станах: (7.50) де – борівський радіус. Для основного стану (n = 1) хвильова функція має вигляд .(7.51) Імовірність знайти електрон в сферичному шарі товщиною dr, тобто в елементарному об’ємі , становить а в шарі одиничної товщини – . (7.52) Як видно з рис. 7.11, залежність володіє різким максимумом при r = а 0. Отже, борівська орбіта в квантовій механіці може інтерпретуватись як геометричне місце точок, де імовірність перебування електрона – максимальна. Але, оскільки заряд електрона “розмазаний” по усьому атомі , то в квантовій механіці, у відповідності зі співвідношенням невизначеностей Гайзенберга, поняття орбіти (траєкторії) електрона втрачає зміст. 7.6.2. Стани електрона з різними значеннями орбітального квантового числа прийнято позначати наступним чином:
Тому енергетичні рівні з різними n реалізуються наступними станами:
Стан 1 s є основним, усі інші стани – збуджені. Час життя електрона в збудженому стані складає ~. Енергетична діаграма квантовомеханічного атома водню має вигляд (рис.7.12), який дещо відрізняється від діаграми борівського атома (рис.7.4). Як і раніше, квантова механіка не накладає жодного обмеження на зміну головного квантового числа. В цей же час зміна і регламентується правилами відбору . (7.53) Друге правило відбору тут не проявляється, але стає важливим, коли випромінюючі атоми перебувають в магнітному полі.
Дата добавления: 2014-01-04; Просмотров: 723; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |