Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Окружность, как частный случай эллипса





Уравнение (33.4) было получено в предположении, что F1 и F2 ––различные точки, то есть c > 0. Тогда b < a. Но кривую, определяемую уравнением (33.4), мы можем рассмотреть и в случае a = b, c = 0. Уравнение (33.4) в этом случае после умножения на a2 примет вид x2 + y2 = a2. Это –– уравнение окружности радиуса a с центром в начале координат. Таким образом, можно рассматривать окружность как частный эллипса, когда b=a и c=0 или, как иногда говорят математики, окружность является "вырожденным" эллипсом, у которого фокусы совпали.

Эксцентриситет эллипса характеризует степень вытянутости эллипса. Чем ближе эксцентриситет к нулю, тем больше эллипс похож на окружность. Чем ближе эксцентриситет к 1, тем сильнее вытянут эллипс. Отметим, что по определению для эллипса 0 < < 1, ибо , а .

Если задано каноническое уравнение эллипса и требуется его построить, то для отображения качественных характеристик достаточно правильно отметить вершины эллипса и провести через них линию, похожую на кривую рис. 33.3, выдерживая симметрию и избегая образования углов на рисунке. Если же из рисунка предполагается получать числовую информацию о координатах его точек, то тогда построение следует проводить более точно. Нужно построить по точкам верхнюю половину эллипса, как график функции взяв для построения достаточно много точек, а нижнюю половину эллипса получить, используя его симметрию.

 

 





Дата добавления: 2014-01-04; Просмотров: 1339; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.