КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов.Молекулы полимеров, называемые также макромолекулами, состоят из большого числа повторяющихся звеньев. Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. Поэтому они выделены в особую группу химических соединений. Различают неорганические, органические и элементоорганические полимеры. Органические полимеры, в свою очередь, подразделяют на природные (натуральные – каучук, шелк, шерсть, хлопок и т.д.), искусственные (получаемые путем химической обработки природных полимеров) и синтетические (синтетические полимеры, каучуки, волокна и т.д.). В настоящей теме рассматриваются, в основном, органические синтетические полимеры. Получают полимеры из мономеров путем синтеза методами полимеризации или поликонденсации. Отдельную группу также составляют олигомеры, которые по значению молекулярной массы занимают промежуточное положение между низкомолекулярными (мономерами) и высокомолекулярными соединениями (ВМС). Рассмотримполучение полимеров методом полимеризации (полиприсоединения). Полимеризация – это реакция соединения молекул мономера, протекающая за счет разрыва кратных связей и не сопровождающаяся выделением побочных низкомолекулярных продуктов, т. е. не приводящая к изменению элементного состава мономера. В реакцию полимеризации вступают, в основном, ненасыщенные мономеры с кратными связями между углеродными атомами, или между углеродом и любым другим атомом (C = C, C = N, C º C, C = O, С = С = О, С = С = С, C = N), а также соединения с циклическими группами, способными раскрываться (например, оксид этилена). В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:
nCH2 = CH2 "(- CH2 – CH2 -)n nCH2 = CH " (- CH2 – CH -)n этилен полиэтилен nCH = CH " (- CH = CH -)n C6H5 C6H5 ацетилен полиацетилен стирол полистирол
nH2C = CH-CH = CH2 " (- CH2 – CH = CH – CH2 -)n бутадиен полибутадиен (бутадиеновый каучук) По числу видов участвующих мономеров различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более видов мономеров). Как любая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновением других. Разрыв двойных связей ведет к уменьшению энергии системы и является самопроизвольным экзотермическим процессом (ΔG < 0, ΔH < 0). Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией и протекает в три основные стадии: 1) инициирование, 2) рост цепи, 3) обрыв цепи. В зависимости от характера активных частиц различают радикальную или ионную полимеризации. При радикальной полимеризации процесс протекает по гомолитическому механизму и инициируется свободными радикалами. Процесс инициирования – образования активных центров (в данном случае, радикалов или макрорадикалов) происходит в результате теплового (действие высоких температур порядка 700-1000 0С), фотохимического (излучение света (hn)), радиационного (действие a, b, g и R-излучения), химического (введение инициаторов: пероксидов, азотосоединений (имеющих функциональную группу – N = N-) и других соединений с ослабленными связями) или других видов взаимодействий. На стадии инициирования происходит образование свободного радикала (R*), который легко взаимодействует с различными непредельными соединениями (мономерами): R* + CH2 = СНR " R*CH2 – С·НR 2) Реакция роста цепи заключается в многократном присоединении молекул мономера к усложняющемуся каждый раз радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом. В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии за счет разности энергий s- и p-связей. 3) Обрыв цепи связан с исчезновением свободного электрона у последнего звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (т.н. реакция рекомбинации), что приводит к возникновению цепи, которая не способна к дальнейшему росту. Следовательно, происходит взаимодействие радикалов с образованием валентнонасыщенных молекул. Однако свободные радикалы (макрорадикалы), являясь исключительно реакционноспособными частицами, взаимодействуют не только с мономерами, но и с растворителем, различными примесями и с образовавшимися макромолекулами. При этом неподеленный электрон (активный центр) может перейти на любую другую молекулу. Подобные реакции называются реакциями передачи цепи. В результате рост цепи прекращается, а молекула-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи. Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами. Таким образом, регулирование длины и, соответственно, молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее, передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т. е. они полидисперсны. Полидисперсность является отличительной особенностью полимеров. Методом радикальной полимеризации синтезируют такие известные полимеры, как поливинилхлорид, полистирол, полиэтилен, бутадиеновые каучуки, полиметилметакрилат и др. (см. табл. 8). По активности при радикальной полимеризации мономеры можно расположить в такой ряд: бутадиен, стирол, метилметакрилат, акрилонитрил, винилхлорид. Ионная полимеризация протекает по гетеролитическому механизму и инициируется ионами (анионами или катионами). Именно они и играют в этом случае роль активных центров. Соответственно, различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например H2SO4 и HCI, неорганические – апротонные кислоты (SnCI4, TiCl4, AlCl3 и др.), металлоорганические соединения АI(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации. Рост цепи можно записать уравнениями реакции: при катионной полимеризации: M n+ + M " M+n+1 при анионной полимеризации: Mn- + M " M-n+1 С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия AlR3. Таблица 8. Мономеры и получаемые из них гомополимеры
Метод ионной полимеризации используется в производстве полиизобутилена, полиформальдегида, полиамидов, например поли-έ-капроамида (капрона), синтетических каучуков, например бутадиенового каучука (см. табл. 8). Мономеры по реакционной активности можно расположить в ряд: акрилонитрил, метакрилонитрил, метилметакрилат, стирол, бутадиен. Методом полимеризации получают 3/4 всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе. Полимеризация в массе (в блоке) – это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя. Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа – легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток – необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др. При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспергированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10-16 до 10-13 м. Недостаток метода – необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов. При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты – в жидком или твердом состоянии. Метод применятся для получения полипропилена и других полимеров. Рассмотрим метод поликонденсации. Это реакции синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающиеся образованием низкомолекулярных продуктов (H2O, NH3, HCl, CH2O и др.). Поликонденсация бифункциональных соединений получила название линейной, например: 2NH2 – (CH2)5 – COOH " аминокапроновая кислота " NH2 – (CH2)5 – CO – NH – (CH2)5 – COOH + H2O " NH2 – (CH2)5 – CO – NH – (CH2)5 – COOH + NH2 – (CH2)5 – COOH " " NH2 – (CH2)5 – CO – NH – (CH2)5 – CO Конечным продуктом является поли-έ-капроамид [-CO-NH-(CH2)5-]n. Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида: NH2-CO-NH2 + CH2O " NH2-CO-NH-CH2OH NH2-CO-NH-CH2OH + CH2O " CH2OH-NH-CO-NH-CH2OH 2 CH2OH-NH-CO-NH-CH2OH" " H2O + CH2OH-NH-CO-NH-CH2-O-CH2-NH-CO-NH-CH2OH На первом этапе синтезируется олигомер линейной структуры, а на втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением CH2O и возникновением сетчатой структуры: [-CH2- NH-CO-NH-CH2-O] n Такой полимер невозможно превратить в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером. Кроме рассмотренной химической связи между мономерами при поликонденсации возникают химические связи между другими группами мономеров, Так как в процессе поликонденсации наряду с высокомолекулярными образуются низкомолекулярные продукты, то элементные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликонденсация протекает по ступенчатому механизму, при этом промежуточные продукты являются стабильными, т.е. поликонденсация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции (H2O, NH, HCI, CH2O и др.) могут взаимодействовать с промежуточными продуктами поликонденсации, вызывая их расщепление (гидролиз, аминолиз, ацидолиз и др.). Поэтому низкомолекулярные продукты приходится удалять из реакционной среды. Монофункциональные соединения, присутствующие в реакционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к обрыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные соединения могут образовываться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера. Поликонденсацию проводят в расплаве, растворе или на межфазной границе. Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10 - 20 0C выше температуры плавления (размягчения) полимеров (обычно 200 - 400 0C). Процесс начинается в среде инертного газа и заканчивается в вакууме. При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта. Межфазная поликонденсация происходит на границе раздела фаз газов, растворов или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой. Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поли-έ-капроамид, полигексаметиленадипинамид (нейлон), полиуретаны, смолы (фенолоформальдегидные, мочевиноформальдегидные) и др. Таким образом, полимеры получают методами полимеризации и поликонденсации. Полимеризация протекает по цепному механизму. При поликонденсации образуются как полимеры, так и низкомолекулярные продукты.
Дата добавления: 2013-12-12; Просмотров: 6492; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |