Фаза колебания - это аргумент гармонической функции: (ωt + α). Начальная фаза α - это значение фазы в начальный момент времени, т.е. при t = 0.
Амплитуда колебания A - это наибольшее значение колеблющейся величины.
14.1.1.3. Круговая или циклическая частота ω
При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π.
ω (t + T) + α = ωt + α + 2π,
или
ωT = 2π.
.
Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду
.
Единица измерения частоты - герц (Гц), 1 Гц = 1 с-1.
Так как
,
то
.
Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление