КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Математическое моделирование
ЛЕКЦИЯ 8 Главная задача математических моделей —определение и прогноз всех параметров функционирования транспортной сети, таких как интенсивность движения на всех элементах сети, объемы перевозок в сети общественного транспорта, средние скорости движения, задержки и потери времени и т.д. Математические модели, применяемые для анализа транспортных сетей, весьма разнообразны по решаемым задачам, математическому аппарату, используемым данным и степени детализации описания движения. Поэтому не представляется возможным дать исчерпывающую классификацию этих моделей. Основываясь на функциональной роли моделей, т.е. на тех задачах, для решения которых они применяются, можно условно выделить три основные класса: · прогнозные модели, · имитационные модели, · оптимизационные модели. Прогнозные модели предназначены для решения следующей задачи. Пусть известны геометрия и характеристики транспортной сети, а также размещение потокообразующих объектов в городе. Необходимо определить, какими будут транспортные потоки в этой сети. Более подробно, прогноз загрузки транспортной сети включает в себя расчет усредненных характеристик движения, таких как объемы межрайонных передвижений, интенсивность потока, распределение автомобилей и пассажиров по путям движения и др. При помощи этих моделей можно прогнозировать последствия изменений в транспортной сети или в размещении объектов. В отличие от этого имитационное моделирование ставит своей целью воспроизведение всех деталей движения, включая развитие процесса во времени. При этом усредненные значения потоков и распределение по путям считаются известными и служат исходными данными для этих моделей. Кратко это отличие можно сформулировать так: прогнозные модели отвечают на вопрос: «сколько и куда» будут ехать в данной сети, а имитационные модели отвечают на вопрос: как в деталях будет происходить движение, если известно в среднем, «сколько и куда». Таким образом, прогноз потоков и имитационное моделирование являются дополняющими друг друга направлениями. Из сказанного следует, что к классу имитационных по их функциональной роли можно отнести широкий спектр моделей, известных под названием модели динамики транспортного потока. В моделях этого класса может применяться разная техника — от имитации движения каждого отдельного автомобиля до описания динамики функции плотности автомобилей на дороге. Для динамических моделей характерна значительно большая детализация описания движения и, соответственно, потребность в больших вычислительных ресурсах. Применение этих моделей позволяет оценить динамику скорости движения, задержки на перекрестках, длины и динамику образования «очередей» или «заторов» и другие характеристики движения. Основные области практического применения динамических имитационных моделей — улучшение организации движения, оптимизация светофорных циклов и др. В настоящее время актуальной задачей является разработка систем автоматизированного оперативного управления движением, работающих в режиме реального времени. Такие системы должны использовать информацию с датчиков в сочетании с динамическим имитационным моделированием. Однако помимо практических применений, развитие динамических моделей представляет большой научный интерес в связи с изучением транспортного потока как физического явления со сложными и нетривиальными свойствами. Среди таких свойств – спонтанная потеря устойчивости, явления самоорганизации и коллективного поведения и др. Модели прогноза потоков и имитационные модели ставят своей целью адекватное воспроизведение транспортных потоков. Существует, однако, большое количество моделей, предназначенных для оптимизации функционирования транспортных сетей. В этом классе моделей решаются задачи оптимизации маршрутов пассажирских и грузовых перевозок, выработки оптимальной конфигурации сети и др.
Дата добавления: 2013-12-13; Просмотров: 714; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |