Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Группы микробиологических критериев безопасности пищевых продуктов




1. Группа показателей санитарного состояния. Неп осредственное выявление патогенных микроорганизмов (возбудителей пищевых инфекций) в пищевых продуктах невозможно из-за низкого их содержания в продукте по сравнению с содержанием сапрофитной микрофлоры. Поэтому при санитарной оценке пищевых продуктов используют косвенные методы, позволяющие определить уровень загрязнения человека выделениями человека. Чем выше этот уровень, тем вероятнее попадание в объект патогенных микроорганизмов – возбудителей кишечных инфекций.

Санитарная оценка пищевых продуктов проводится по двум микробиологическим показателям: общей бактериальной обсемененности (КМАФАнМ) и наличию бактерий группы кишечной палочки (БГКП).

Общая бактериальная обсемененность (КМАФАнМ) - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов в 1 г или 1 см3 продукта.

Высокая бактериальная обсемененность пищевых продуктов свидетельствует о недостаточной термической обработке сырья, недостаточно тщательной мойке и дезинфекции оборудования, неудовлетворительных условиях хранения и транспортировки продукции.

Общую бактериальную обсемененность определяют в молочных продуктах, в которых отсутствует технически полезная микрофлора (микрофлора заквасок). Для определения этого показателя используют универсальные питательные среды: мясопептонный агар (МПА) или среду для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов.

Наличие бактерий группы кишечной палочки (БГКП) наблюдается во всех молочных продуктах (за исключением стерилизованных). БГКП объединяют представителей нормальной микрофлоры кишечника человека и относятся к семейству Enterobacteriaceae родов Escherichia, Citrobacter, Enterobacter, Klebsiella, Serratia. БГКП выполняют функцию индикатора фекального загрязнения и относятся к санитарно-показательным микроорганизмам.

Выбор БГКП в качестве санитарно-показательных микроорганизмов для оценки санитарного состояния пищевых продуктов не случаен. Санитарно-показательные микроорганизмы должны отвечать следующим требованиям:

· Эти микроорганизмы должны являться представителями нормальной микрофлоры организма, в нем развиваться и размножаться;

· Они должны в больших количествах выделяться из организма;

· В окружающей среде они должны длительное время сохранять свою жизнеспособность, но не размножаться;

· Определение этих микроорганизмов должно осуществляться простыми методами.

В нормативных документах (государственных, отраслевых стандартах (ГОСТ, ОСТ), технических условиях, требованиях СанПиНа) обычно указывается количество продукта, в котором БГКП не допускаются. При высоком уровне загрязнения продукта БГКП возрастает вероятность нахождения в нем патогенных микроорганизмов – возбудителей кишечных инфекций (дизентерии, брюшного тифа, холеры и др.). Для определения БГКП применяют накопительную среду Кесслера, а идентификацию этих бактерий проводят с использованием дифференциально-диагностической среды Эндо.

2. Группа условно-показательных микроорганизмов. К этой группе относятся микроорганизмы – возбудители пищевых отравлений, таких как Proteus vulgaris, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Clostridium botulinum.

В молочных продуктах, богатых белком (например, твороге, сыре) нормируется содержание коагулазоположительного золотистого стафилококка (Staphylococcus aureus) – возбудителя пищевой интоксикации. При определении золотистого стафилококка используют элективные питательные среды: молочно-солевой (МСА) или желточно-солевой (ЖСА) агар.

3. Группа патогенных микроорганизмов

Из патогенных микроорганизмов в пищевых продуктах определяют сальмонеллы. Проводят исследования на наличие сальмонелл органы Санэпиднадзора. Обычно, сальмонеллы не допускаются в 25 г (см3) продукта.

Оля определения сальмонелл используют накопительные питательные среды (селенитовую, Кауфмана, Мюллера) и дифференциально-диагностические среды (Плоскирева, Левина).

4. Группа показателей микробиологической стабильности продукта. К этой группе относятся микроскопические грибы и дрожжи, которые, как известно, являются возбудителями порчи продукта. Этот показатель нормируется в молочных продуктах с растительными добавками. Динамику роста грибов и дрожжей определяют при установлении сроков годности и режимов хранения новых видов продуктов.

Кроме вышеперечисленных микробиологических показателей для прогнозирования качества выпускаемой молочной продукции целесообразно определять также отдельные группы микроорганизмов, которые относятся к представителям технически вредной микрофлоры (липолитические, протеолитические бактерии) и полезной микрофлоры (молочнокислые и др. бактерии).

 

Характеристика питательных сред, используемых для микробиологического исследования молочных продуктов

Для микробиологического исследования молочных продуктов и проведения санитарно-бактериологического контроля условий производства используют натуральные (приготовленные из продуктов животного и растительного происхождения) плотные и жидкие питательные среды.

Плотные питательные среды готовятся из жидких путем внесения гелеобразующих веществ (агар-агара или желатина).

Агар-агар – полисахарид, не используемый микроорганизмами для питания. Получают его из морских водорослей. Плавится агар при температуре около 1000С и затвердевает при температуре около 400С. Плотные питательные среды используют для количественного учета микроорганизмов (каждая клетка вырастает на плотной среде в виде изолированной колонии). Путем посева молочных продуктов и их разведений на плотные питательные среды определяют КМАФАнМ, содержание золотистого стафилококка, микроскопических грибов и дрожжей, количество молочнокислых, гнилостных бактерий, спор бактерий рода Bacillus и др. Содержание агар-агара в плотных питательных средах составляет около 2%.

Желатин – белок, который выделяют из костей и хрящей животных при их вываривании. Многие микроорганизмы, обладающие протеолитической активностью, могут гидролизовать желатин, а продукты гидролиза использовать в качестве источника питания. Способность разжижать среды с желатином является диагностическим признаком при идентификации микроорганизмов.

Питательные среды бывают универсальные (для культивирования микроорганизмов различных групп), накопительные, элективные (для накопления и выявления микроорганизмов определенных групп) и дифференциально-диагностические (для определения видовой принадлежности микроорганизмов).

В качестве универсальных питательных сред используют жидкие (например, мясопептонный бульон - МПБ) и плотные (например, мясопептонный агар (МПА) и среда Сабуро) среды.

Накопительные среды имеют жидкую консистенцию и используются для выявления микроорганизмов, содержание которых в продукте незначительное. Накопительные питательные среды используются для выявления наличия бактерий группы кишечной палочки -БГКП (среда Кесслера) и сальмонелл (среда Кауфмана, селенитовая среда). При наличии роста бактерий на накопительных питательных средах в дальнейшем, как правило, делается пересев на плотные дифференциально-диагностические питательные среды, которые используются для идентификации выросших на накопительных средах бактерий. Так, в качестве дифференциально-диагностической среды для идентификации БГКП используется среда Эндо.

Элективные (избирательные) питательные среды имеют плотную консистенцию. Примером элективной питательной среды может являться молочно-солевой агар, который используется для выявления в молочных продуктах золотистого стафилококка.

В заводских лабораториях для приготовления питательных сред обычно используют промышленно изготовляемые сухие среды, которые представляют собой гигроскопические порошки, легко растворяющиеся в воде. Некоторые питательные среды готовят по прописям из отдельных компонентов (молока, пептона, дрожжевого экстракта, питательных солей и т.д.).

После приготовления питательных сред их разливают в пробирки или колбы, закрывают ватно-марлевыми пробками и стерилизуют в автоклаве. Наиболее часто автоклавирование ведется при избыточном давлении 0,1 Мпа и, следовательно, температуре 1210С в течение 15-30 мин. Некоторые питательные среды стерилизуют при более низком избыточном давлении или текучим паром (не создавая избыточного давления).




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 5522; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.