КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение систем линейных уравнений (продолжение)
Запишем систему линейных уравнений (4.1) в виде S: . И рассмотрим систему S¢: . Очевидно, S¢ Þ S, и если уравнение F = 0 является следствием системы S, то S Þ S¢, и S Û S¢. Более того, S Û S¢ тогда и только тогда, когда уравнение F = 0 является следствием системы S. Это означает, что добавление к системе S или удаление из системы S¢ уравнения, которое является следствием системы S, не меняет множества решений системы S. Чтобы сделать систему проще, естественно удалять из системы все уравнения, которые являются следствиями остальных уравнений. Утверждение. Если F = a1F1+a2F2+…+amFm, то уравнение F = 0 является следствием системы S, и S¢ Û S. Доказательство очевидно: любое решение системы S обращает в 0 все F1, F2,…, Fm, и значит, обращает в 0 выражение F, так как a10 +a20+…+am0 = 0. ÿ Посмотрим, когда существуют такие a1, a2, …,am, что a1F1+a2F2+…+amFm=F. Если такие a1,a2, …,am существуют, то, сравнивая коэффициенты при х1, х2,…, хп и правые части уравнений, получим, что a1, a2, …,am являются решениями следующей системы из п+1 уравнений: Q: . Наоборот, если a1, a2 , …, am - решения этой системы, то a1F1+a2F2+…+amFm = F. Таким образом, F = a1F1+…+amFm Û существует решение системы Q Û (по теореме Кронекера-Капелли) равны ранги матриц и , или равны ранги транспонированных матриц и . Следовательно, если ранги этих матриц равны, то последнее уравнение в системе S¢ можно отбросить и перейти от системы S¢ к системе S. Предположим теперь, что нам дана СЛУ (4.1), у которой ранг основной матрицы и ранг расширенной матрицы равны r (то есть система совместна). Для простоты будем считать, что отличный от нуля минор Mr порядка r находится в левом верхнем углу матрицы А. Тогда все уравнения, начиная с (r+1)- го и до т- го, являются линейными комбинациями первых r уравнений, и значит, их следствиями. То есть наша СЛУ равносильна системе из первых r уравнений, а уравнения с (r+1)- го и до т- го мы можем отбросить. Оставшиеся r уравнений мы запишем в виде . Так как определитель основной матрицы этой системы равен Mr ¹ 0, то, решая эту систему по Крамеру, получим хi=/Mr, i= 1,…,r, где - определители, зависящие от хj, j= r+1,…,n. Раскрывая эти определители, пользуясь линейностью по i -му столбцу, получим: =Di + сi,r+1 хr+1+…+ сi,nхn, i=1,…,r. Подставляя эти формулы в хi=/Mr, получим выражения главных неизвестных через свободные.
Лекция 17.
8.3. Необходимые и достаточные условия равенства нулю определителя. Теорема. Пусть А – (п,п)- матрица. Тогда равносильны следующие условия:
Доказательство. Из определения ранга rk 1 Û 2. Если det A ¹ 0, то, например, по правилу Крамера существует только нулевое решение однородной СЛУ с основной матрицей A. Наоборот, если det A = 0, rg A = r < n, то у однородной СЛУ существуют n – r свободных неизвестных (см. 4.3), и, значит, существует ненулевое решение. Отсюда 1 Û 3. Далее, существование ненулевого решения для однородной СЛУ равносильно линейной зависимости вектор-столбцов матрицы А (см. 7.5), то есть 3 Û 4. Так как det A = det AТ, то 1 Û 5. ÿ
Дата добавления: 2014-01-04; Просмотров: 280; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |