Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Motion of the center of mass




The instantaneous velocity of a particle is v = d r / dt. Hence, if we take the time derivative of Eq. 5.10 we find

Velocity of the center of mass vCM = mi v i (5.13)

This may be written in a form that highlights the importance of the CM:

Total linear momentum of a system of particles P= M vCM = m1 v 1 + m2 v 2 +…+ mN v N (5.14)

The total momentum P = ∑ p i of a system of particles is equivalent to that of a single (imaginary) particle of mass M = ∑ mi moving at the velocity of the center of mass v cm.

This result provides us with an enormous simplification: We may deal with the translational motion of extended objects or systems of particles, as if they were point particles with all the mass concentrated at the CM.

If we take the derivative of Eq. 5.14 we find M a CM = ∑ mi a i = ∑ F i = F EXT, where F i is the net force on the i th particle. We conclude that Newton's second law for a system of particles is

F EXT = M a CM (5.15)

The CM accelerates as if it were a point particle of mass M = ∑ mi and the net external force were applied at this point. If we had started with the second law in the form F = d p / dt, we would have found

F EXT = P (5.16)

The rate of change of the total momentum of a system is equal to the net external force.

Equations 5.15 and 5.16 allow us to apply the second law to a system of particles in a very simple way—provided we are interested only in the translational motion of the CM. For a complete description of the motion of the system, we would have to apply the second law to each individual particle, which can be a formidable task.

We may deduce Newton's first law as it applies to a system of particles either from the conservation of linear momentum or from the second law. Using either Eq. 5.15 or 5.17, we may state

If F EXT = 0, then v CM = constant

If the net external force on a system of particles is zero, the velocity of the center of mass remains constant.

Figure 5.5 shows a spinning wrench moving over a frictionless surface. Al­though the motion of any given particle is quite complex, the velocity of the CM stays constant.

FIGURE 5.5

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 308; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.