Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрические изображения комплексных чисел




 

Рассмотрим декартову числовую плоскость.

Изобразим комплексное число с = (a,b) = a+i·b точкой М(a,b). Эту точку М мы будем называть аффиксом комплексного числа с = (a,b) (аффикс – отметка). В дальнейшем эти точки мы будем также обозначать буквой с, и отождествлять комплексные числа с соответствующими точками декартовой плоскости.

Плоскость, точки которой являются изображением комплексных чисел, называется комплексной плоскостью, ее обозначают символами (Z) или (W).

Легко видеть, что действительные числа а = (а,0) изображаются точками оси иксов (oX), поэтому ось абсцисс называется действительной осью.

Мнимые числа с = (a,b) = a+i·b (b ≠ 0) изображаются точками, не лежащими на оси абсцисс. Чисто мнимые числа c = (0,b) = b·i (b ≠ 0) изображаются точками оси ординат, поэтому эту ось в комплексной плоскости называют мнимой осью.

Начало координат (0,0) является изображением комплексного числа 0, поэтому оно называется нулем. Отметим, что комплексные числа Z=x+i·y=(x,y) также изображаются векторами плоскости с проекциями x и y. Начало вектора может быть помещено в любую точку.

Изобразим комплексное число Z = (x,y) = x+i·y вектором, начало которого помещено в нуль.

Длина этого вектора очевидно равна и называется модулем комплексного числа Z и обозначается .

Угол, который составляет этот вектор с положительным направлением действительной оси, называется аргументом комплексного числа Z и обозначается ArgZ. Этот угол определяется неоднозначно, а с точностью до слагаемых кратных . Отметим, что направление отсчета углов против часовой стрелки принимают за положительное, а по часовой стрелке за отрицательное.

Среди бесконечного множества значений ArgZ есть одно такое, которое содержится в полуинтервале , оно называется главным значением аргумента числа Z и обозначается символом argZ.

Очевидно ArgZ = argZ+2πk (к = 0, 1, 2,…). Легко доказывается, что для комплексных чисел Z = x+y·i

argZ =




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 562; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.