КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Капиллярные явления
При смачивании возникает искривление поверхности, изменяющее свойства поверхностного слоя. Существование избытка свободной энергии у искривленной поверхности приводит к так называемым капиллярным явлениям - весьма своеобразным и важным. Проведем сначала качественное рассмотрение на примере мыльного пузыря. Если мы в процессе выдувания пузыря откроем конец трубочки, то увидим, что пузырь, находящийся на ее конце, будет уменьшатся в размерах и втянется в трубку. Поскольку воздух с открытого конца сообщался с атмосферой, постольку для поддержания равновесного состояния мыльного пузыря необходимо чтобы давление внутри было больше, чем внешнее. Если при этом соединить трубочку с монометром, то на нем регистрируется некоторая разность уровней - избыточное давление DР в объемной фазе газа с вогнутой стороны поверхности пузыря. Установим количественную зависимость между DР и радиусом кривизны поверхности 1/r между двумя объемными фазами, находящимися в состоянии равновесия и разделенными сферической поверхностью. (например пузырек газа в жидкости или капля жидкости в фазе пара). Для этого используем общее термодинамическое выражение для свободной энергии при условии Т = const и отсутствии переноса вещества из одной фазы в другую dni = 0. В состоянии равновесия возможны вариации поверхности ds и объема dV. Пусть V увеличится на dV, а s - на ds. Тогда: dF = - P1dV1 - P2dV2 + sds. В состоянии равновесия dF = 0. С учетом того, что dV1 = dV2, находим: P1 - P2 = s ds/dV. Т.о P1 > P2. Учитывая, что V1 = 4/3 p r3, где r - радиус кривизны, получаем: ds/dV = 2/r. Подстановка дает уравнение Лапласа: P1 - P2 = 2s/r. (1) В более общем случае для элипссоида вращения с главными радиусами кривизны r1 и r2, закон Лапласа формулируется: P1 - P2 = s/(1/R1 - 1/R2). При r1 = r2 получаем (1), при r1 = r2 = ¥ (плоскость) P1 = P2. Разность DР называют капиллярным давлением. Рассмотрим физический смысл и следствия из закона Лапласа, являющегося основой теорий капиллярных явлений.Уравнение показывает, что разность давлений в объемных фазах возрастает с увеличением s и с уменьшением радиуса кривизны. Таким образом, чем выше дисперсность, тем больше внутренее давление жидкости со сферической поверхностью. Например для капли воды в фазе пара при r = 10-5 см, DР = 2. 73. 105 дин/см2 »15 ат. Таким образом давление внутри капли по сравнению с паром оказывается на 15 ат выше, чем в фазе пара. Необходимо помнить, что независимо от агрегатного состояния фаз, в состоянии равновесия давление с вогнутой стороны поверхности всегда больше, чем с выпуклой.Уранение дает основу для экспериментального измерения s методом наибольшего давления пузырьков. Одно из важнейших следствий существования капиллярного давления - поднятие жидкости в капилляре. Капиллярные явления наблюдаются в содержащих жидкость В узких сосудах, у которых расстояние между стенками соизмеримо с радиусом кривизны поверхности жидкости. Кривизна возникает в результате взаимодействия жидкости со стенками сосуда. Специфика поведения жидкости в капиллярных сосудах зависит от того, смачивает или несмачивает жидкость стенки сосуда, точнее от значения краевого угла смачивания. Рассмотрим положение уровней жидкостей в двух капиллярах, один из которых имеет лиофильную поверхность и поэтому стенки его смачиваются, а у другого поверхность лиофобизирована и не смачивается. В первом капилляре поверхность имеет отрицательную кривизну. Дополнительное давление Лапласа стремится растянуть жидкость. (давление направлено к центру кривизны). Давление под поверхъностью понижено по сравнению с давлением у плоской поверхности. В результате возникает выталкивающая сила, поднимающая жидкость в капилляре до тех пор, пока вес столба не уравновесит действующую силу.Во втором капилляре кривизна поверхности положительная, дополнительное давление направлено внутрь жидкости, в результате жидкость в капилляре опускается. При равновесии лапласовское давление равно гидростатическому давлению столба жидкости высотой h: DР = ± 2s/r = (r - ro) gh, где r, ro - плотности жидкости и газовой фазы, g- ускорение свободного падения, r -радиус мениска. Чтобы высоту капиллярного поднятия связать с характеристикой смачивания, радиус мениска выразим через угол смачивания Q и радиус капилляра r0. Понятно, что r0 = r cosQ, высота капиллярного поднятия выразится ввиде (формула Жюрена): h = 2sсosQ / r0 (r - r0)g При отсутствии смачивания Q>900 , сosQ < 0, уровень жидкости опускается на величину h. При полном смачивании Q = 0, сosQ = 1, в этом случае радиус мениска равен радиусу капилляра. Измерение высоты капиллярного поднятия лежит в основе одного из наиболее точных методов определения поверхностного натяжения жидкостей. Капиллярным поднятием жидкостей объясняется ряд известных явлений и процессов: пропитка бумаги, тканей обусловлена капиллярным поднятием жидкости в порах. Водонепроницаемость тканей обеспечивается их гидрофобностью - следствие отрицательного капиллярного поднятия. Подъем воды из почвы, происходит благодаря структуре почвы и обеспечивает существование растительного покрова Земли, подъем воды из почвы по стволам растений происходит благодаря волокнистому строению древесины, процесс кровообращения в кровеносных сосудах, поднятие влаги в стенах здания (прокладывают гидроизоляцию) и т д. Термодинамическая реакционная способность (т.р.с.). Характеризует способность вещества переходить в какое-либо иное состояние, например в другую фазу, вступать в химическую реакцию. Она указывает на удаленность данной системы от состояния равновесия при данных условиях. Т.р.с. определяется химическим сродством, которое можно выразить изменением энергии Гиббса или разностью химических потенциалов. Р.с зависит от степени дисперсности вещества. Изменение степени дисперсности может приводить к сдвигу фазового или химического равновесия. Соответствующее приращение энергии Гиббса dGд (из-за изменения дисперсности) можно представить в виде объединенного уравнения первого и второго начала термодинамики: dGд = -S dT + V dp Для индивидуального вещества V =Vмол и при Т = const имеем: dGд = Vмолdp или DGд = Vмол Dp Подставляя в это уравнение соотношение Лапласа, получим dGд = s Vмол ds/dV для сферической кривизны: dGд =±2 s Vмол /r (3) Уравнения показывают, что приращение реакционной способности, обусловленное изменением дисперсности, пропорционально кривизне поверхности, или дисперсности. Если рассматривается переход вещества из конденсированной фазы в газообразную, то энергию Гиббса можно выразить через давление пара, приняв его за идеальный. Тогда дополнительное изменение энергии Гиббса, свзанное с изменением дисперсности состовляет: dGд = RT ln (pд / ps) (4), где pд и ps - давление насыщенного пара над искривленной и ровной поверхностями. Подставляя (4) в (3) получим: ln (pд / ps) = ±2 s Vмол /RТ r Cоотношение носит название уравнения Кельвина - Томсона. Из этого уравнения следует, что при положительной кривизне давление насыщенного пара над искривленной поверхностью будет тем больше, чем больше кривизна, т.е. меньше радиус капли. Например для капли воды с радиусом r = 10-5 см (s=73, Vмол =18) pд / ps = 0,01, т.е.1%. Это следствие из закона Кельвина - Томсона позволяет предсказать явление изотремической перегонки, заключающейся в испарении наиболее малых капель и конденсации пара на более крупных каплях и на плоской поверхности. При отрицательной кривизне, имеющей место в капиллярах при смачивании, получается обратная зависимость: давление насыщенного пара над искривленной поверхностью (над каплей) уменьшается с увеличением кривизны (с уменьшением радиуса капилляра). Т.о, если жидкость смачивает капилляр, то конденсация паров в капилляре происходит при меньшем давлении, чем на ровной поверхности. Именно поэтому уравнени Кельвина часто называют уравнением капиллярной конденсации. Рассмотрим влияние дисперсности частиц на их растворимость. Учитывая, что изменение энергии Гиббса выражается через растворимость вещества в разном дисперсном состоянии аналогично соотношению (4), получим для неэлектролитов: ln(cд/ca) = ±2 s Vмол /RТ r где cд и ca - растворимость вещества в высокодисперсном состоянии и растворимость при равновесии с крупными частицами этого вещества Для электролита, диссоциируюшего в растворе на n ионов, можно записать (пренебрегая коэффициентами активности): ln(aд/aс) = n ln (cд/cs) = ±2 s Vмол /RТ r, где aд и aс - активности электролита в растворах, насыщенных по отношению к в высокодисперсном у и грубодисперсному состоянию. Уравнения показывают, что с увеличением дисперсности растворимость растет, или химический потенциал частиц дисперсной системы больше, чем у крупной частицы, на величину 2 s Vмол /r. В то же время растворимость зависит от знака кривизны поверхности, а это значит, что если частицы твердого вещества имеют неправильную форму с положительной и отрицательной кривизной и находятся в насыщенном растворе, то участки с положительной кривизной будут растворяться, а с отрицательной - наращиваться. В результате частицы растворяемого вещества со временем приобретают вполне определенную форму, отвечающую равновесному состоянию. Степень дисперсности может также влиять на равновесие химической реакции: - DG0д = RT ln (Кд / К), где DG0д - приращение химического сродства, обусловленное дисперсностью, Кд и К - константы равновесия реакций с участием диспергированных и недиспергированных веществ. С увеличением дисперсности повышается активность компонентов, а в соответствии с этим изменяется константа химического равновесия в ту или другую сторону, в зависимости от степени дисперсности исходных веществ и продуктов реакции. Например для реакции разложения карбоната кальция: CaCO3 «CaO + CO2 повышение дисперсности исходного карбоната кальция сдвигает равновесие в правую сторону, и давление диоксида углерода над системой возрастает. Увеличение дисперсности оксида кальция приводит к противоположному результату. По той же причине с увеличением дисперсности ослабляется связь кристаллизационной воды с веществом. Так макрокристалл Al2O3 .3 Н2О отдает воду при 473 К, в то время как в осадке из частиц коллоидных размеров кристаллогидрат разлагается при 373 К. Золото не взаимодейтсвует с хлороводородной кислотой, а коллоидное золото в ней растворяется. Грубодисперсная сера не взаимодействует заметно с солями серебра, а коллоидная сера образует сульфид серебра.
Дата добавления: 2014-01-07; Просмотров: 1045; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |